
Eprom Emulator
Originally published by Paul Stenning in ETI, December 1994

This EPROM Emulator was designed to compliment the EPROM Programmer (Mark 2). An
EPROM Emulator can save a vast amount of time when developing software, compared to
programming and erasing EPROMs.

The unit presented here will emulate the standard 27 family of devices, from 2764 to 27512, and
can be used with an IBM PC compatible computer. The smaller 24 pin devices in this family (2708,
2716 and 2732) are almost obsolete and are now more expensive than a 2764. I did not feel it
necessary to accommodate these devices in this design since they would significantly increase the
complexity.

This design uses readily available components to reduce the likelihood of obsolescence. The unit is
powered from either an external PSU or the circuit under development - the supply requirement
being 5V @ 100mA. The power supply design for the EPROM Programmer will also power this
unit if an external supply is needed.

The emulator itself is dumb and is controlled by the host computer via the RS232 serial port
(COM1 or COM2). Device selection and operation mode is set by front panel switches.

The accompanying software is available for download. The software will operate on any PC
running MS-DOS or PC-DOS version 3.0 or later and having at least 512K of RAM and one RS232
serial port. A hard disk and a colour monitor are strongly recommended. The software is written in
Microsoft QuickBASIC V4.5, and the full source code is supplied for those wishing to enhance or
modify it. This source code is also compatible with QBASIC, as supplied with MS-DOS 5.0 and
later. You do not need QuickBASIC or QBASIC to use this disk. The disk also contains the software
for the EPROM Programmer. A description of the software operation is given later.

The unit may also be suitable for use with other types of home computer having an RS232 serial
port, although this has not been tested and no software is available. It will definitely not work with
Commodore Amiga computers, due to a peculiarity in the serial port handling.

How it Works
The circuit diagram is spread over a number of illustrations. Although it may initially look complex,
it is in fact relatively straightforward. When a "-" follows a signal name (for example STROBE-),
this shows that the line is active low. When a number is followed by an "h" this indicates that the
number is hexadecimal.

The RS232 (serial) interface, buffering and clock are shown in figure *. IC3 (6402) is a UART
(Universal Asynchronous Receiver/Transmitter) which basically converts serial data to parallel and
vice-versa. The device supports most common serial data formats, in this application it is
configured to give eight data bits, one stop bit and no parity checking. The data rate is set by the
crystal controlled clock circuit (IC2), which in most cases will be set to 9600 Baud. Since this unit
is designed to receive data only, the parallel input lines (pins 26 to 33) are held low and the serial

data output line (pin 25) is not connected.

A gate in IC1 is used as the RS232 buffer, converting the +/- 10V RS232 standard data from the PC
to a 5V pulse train suitable for the UART. The diodes restrict the RS232 voltage to within the 0-5V
range, the remainder is dropped across R7.

A byte of serial data arriving on pin 20 of IC3 will be converted to parallel data, which will appear
on pins 5 to 12. Pin 19 will go high, and no further data can be received until pin 18 is taken low
momentarily. One gate of IC4 causes this to happen, R3 and C8 create a slight delay giving a
STROBE- pulse with adequate width for clocking other devices.

R4, D1, C9 and one gate of IC4 produce the power-on reset pulse for IC3, IC5 and IC6. SW1
allows the circuit to be reset again as required.

Assume SW2 is in the upper position (Upload), so Fill- is low and Run- is high. IC12, IC13 and
IC14 are disabled, so the 'EPROM' socket SK1 is isolated from the RAM. IC7, IC8 and IC11 are all
enabled, effectively connecting the RAM (IC9 and IC10) to the address counters (IC5 and IC6) and
the UART.

When a byte of data is received, the Strobe- line will pulse low as described previously. This is
connected to the Write Enable- (pin 27) on the RAM IC's so the received data will be written to the
current memory location.

The Strobe- signal is also connected to pin 23 of the UART. This will cause the transmission section
of the device to go through it's motions (even though nothing is listening!). As the data is sent, pin
24 will pulse, incrementing the address counters IC5 and IC6. The section of the UART is used to
merely apply a suitable delay before the address is incremented, to ensure the data is correctly
stored.

When the next byte of data is received, it will be loaded into the next memory location, and so on.
As long as the user presses the Reset button when prompted by the software, the data will arrive in
the correct places. The software simply sends the data to the emulator one byte at a time, you could
alternatively simply copy a binary image file to the COM port.

Two 256K x 1 Bit (32K x 8 Bit) RAM devices are used, to obtain the full 64K addressing range of a
27512 EPROM. The CS lines are used in conjunction with an inverter on the A15 line to select
which device is used at a particular time.

Now assume that SW2 is in the lower (Run) position. IC7, IC8 and IC11 are now disabled, isolating
the RAM from the upload circuitry. IC12 and IC13 are enabled, effectively connecting the RAM
address bus to the 'EPROM' socket. SW3 and SW4 select the EPROM type, and set any unused
RAM address lines low. When pins 22 and 24 of the 'EPROM' are both low, IC14 is enabled (via
IC4) connecting the RAM data lines to the 'EPROM'.

The prototype has not yet been tested on a speed-critical microprocessor system. The interface
electronics should add no more than 20ns to the access time of the RAM devices used. Therefore
with 100ns RAM chips, the unit should be able to emulate a 120ns EPROM, and will definitely
emulate a 150ns device. If speed is critical, fit the fastest RAM chips you can get - 35ns devices are
available if you are prepared to pay for them!

Construction
The unit is assembled on a single sided PCB. A number of wire links are required, which should be
fitted before any components, since some pass underneath ICs. I would suggest that the resistors are
fitted next, followed by the ICs, then the capacitors, then the remaining parts. Fit a link wire
between COM and 96 to set the Baud rate to 9600. Fit SIL header strip or Veropins for the off-board
connections.

I would suggest that sockets are used for the RAM chips and the UART, in view of their cost. It
would also be a good idea to use sockets for IC4, IC12, IC13 and IC14, since these interface to the
outside world and could be damaged if there is a problem on the system being tested. The sockets
allow for ease of changing if the worst happens.

If you do not plan to emulate 27512 EPROMs, you could save a few pounds by omitting IC10 (it
can always be added later). The unit will then emulate up to 27256 devices, so move the stop on the
Device switch to prevent the 27512 option being selected.

Fit a 28-way IC socket in SK2 position. A 300mm (or shorter) length of 28 way ribbon cable should
be fitted with a 28 way DIL connector on each end. These can be readily pressed together in a vice
or WorkMate, if three thicknesses of Veroboard are used to protect the connector pins. Take care
when doing this, as it is not easy to get the connector apart again if something goes wrong. One end
of this cable plugs onto SK2, make sure the edge of the cable with the different colour goes to pin 1.

When you receive these connectors from your supplier, please make sure the two parts are not
pressed fully together before removing from the polythene packing. If they are, send them back.
The two I purchased from Maplin were fully assembled and I managed to break one while
disassembling them.

The interwiring is shown in figure *. This should be carried out at this stage, since it is necessary
for testing. After testing the board can be fitted into the case.

The connections for both 9 and 25 way serial connectors, use whatever matches the socket on your
computer. On the prototype a 9 way D connector (serial) and a 6 way DIN socket (DC input) were
fitted to the case. The rotary switch connections are shown by giving the pin number or letter
marked on the switch body.

Testing
Connect the unit to a 5V supply and the serial port on your PC, and run the program "SER-
TEST.EXE" on the software disk. When prompted, type "1" or "2" followed by <Enter> to say
which serial port you are using. The program does nothing more exciting than wait for you to enter
a 2-digit hex number (followed by <Enter>) and then sends it to the emulator. It then attempts to
read back a number, if it's successful it prints the number otherwise it prints "**". Since the
emulator does not transmitt any data the software will always respond with "**". To exit just press
<Enter> on it's own. All the responses in this section will be shown with quotes ("") around them -
just type the number (followed by <Enter>), don't type the quotes.

Switch the emulator to 27512 and Upload, and press Reset. Type "00" on the computer, and the

software should respond with "**". Using a logic probe, test meter or oscilloscope, check the logic
levels on pins 9, 10, 11, 13, 14, 15, 16 and 17 of IC9. They should all be low. If you type "01", pin 9
should be high, and the others should remain low. Now enter "02", "04", "08", "10", "20", "40" and
"80" in turn. After each entry, check the logic levels on the data pins, only one should be high in
each case - 10, 11, 13, 14, 15, 16 and respectively.

Press Reset on the programmer. Press Enter on it's own to quit the software then run "ADR-
TEST.EXE", which is also on the disk. Since the address counters are incremented when a byte is
sent, it would take a long time to get the count to 65535 manually! ADR-TEST does it
automatically, and pauses at four points to allow you to check the logic levels. Follow the
instructions on screen. The table below shows the expected logic levels on the address pins of the
IC9 at the four pause points.

--
Addr Line A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
IC9 Pin 20 27 26 2 23 21 24 25 3 4 5 6 7 8 9 10
--
Count Expected Logic Level
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21845 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
43690 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
65535 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
--

If these readings are OK, and the preceding tests were also successful you can be fairly confident
that the unit is working correctly. It is not so easy to check emulation part of the unit, but providing
the unit was carefully constructed the chances of problems are unlikely.

If you have a microprocessor system and a suitable hex file, you can try emulating a known good
EPROM using the information given shortly.

The Case
The prototype was constructed in a plastic case, 190mm x 165mm x 68mm, see parts list for details.
A suitable overlay for the front panel is shown in figure *. Two photocopies may be taken (enlarge
to 162mm x 64mm), one can then be used as a drilling template while the other may fixed to the
front panel with clear self-adhesive vinyl.

A suitable notch should be cut in the right side of the case for the ribbon cable to pass through. The
power and RS232 connectors mount on the rear panel.

Software
The software is supplied as-is, and Paul Stenning cannot accept any liability for any loss or damage
however caused. The source code is supplied so that you may modify the software for your own use
only.

A batch file is supplied on the disk to simplify installation. Insert the disk in the drive, type "A:"
then "INSTALL", and the batch file will make a \EPROM directory on your drive C:, and copy the

software to there. If you do not have a hard disk, make a working copy of the disk using
DISKCOPY, then put the original away. Do not write-protect your working copy or the software
will not work.

If you are using Windows, suitable icon, PIF and group files are supplied on the disk. Some parts of
the software will operate much slower under Windows, particularly the initialisation when the serial
port is opened. However it will run in the background (probably very slowly) if you are using 386
Enhanced Mode.

The main software of interest for this project is spread over two programs, "EMULATE.EXE" and
"HEX-CONV.EXE". The first of these is the main control software for the emulator, while the
second converts various industry standard hex file formats to and from the EPROM emulator
format.

Additional programs on the disk are "PROGRAM.EXE" which controls last months EPROM
Programmer, and "SPLIT2.EXE" & "SPLIT4.EXE" which divide Intel hex files into 2 or 4 files for
16 and 32 bit systems respectively. Since the full BASIC source code is given for all of these
programs, it would be possible to create one large program containing all the facilities - if someone
had more time than me!

When "EMULATE.EXE" is started, the Device Selection Menu will appear. From here you choose
the type of device you will be using, either 2764, 27128, 27256 or 27512.

Once you have chosen the device required, the Main Menu will appear. Option 1 allows you to
upload hex data to the emulator. The hex data is saved and loaded ASCII-Text format which is
peculiar to this software. "HEX-CONV.EXE" will convert to and from this format.

When Option 1 is selected you will be told where to set the switches on the emulator. You will then
be asked for a filename, simply enter 8 the alpha-numeric characters - the extension is fixed to
.HEX and does not need to be typed. Now sit back and wait, the progress will be shown on the
screen.

Option 2 allows you to change the EPROM type as previously. Option 3 lets you run the Hex File
Convertor program, "HEX-CONV.EXE" and option 4 lets you access a DOS Shell, type "EXIT" to
return to the emulator. To quit the emulator, press Escape.

The Hex File Convertor was described in detail last month, so I won't bore you by repeating it here!

Emulating
The emulator may be powered by the microprocessor circuit being tested if there is sufficient
capacity in the power supply. This will happen by default, via pins 14 and 28 of SK2.

If you need to power the emulator separately, you will need to isolate pin 28 of SK2 from the circuit
under test, to prevent the two power supplies conflicting. This is easily achieved by removing pin
28 from a spare IC socket, and then fitting this onto the free end of the ribbon cable before plugging
it into the test circuit.

The 300mm length of ribbon cable should not cause any problems unless the microprocessor system
is very fast. In this case, try making another cable just long enough to reach.

The ICs interfacing this unit to the outside world are 74LS TTL devices, since these are somewhat
more robust than 74HCT, and the inputs are not so static sensitive. For speed critical systems you
may need to use a different logic family here.

When the unit is not in use it would be a good idea to plug the end of the ribbon cable into a piece
of anti-static foam. This will help protect the electronics from static, and prevent the pins from
being bent.

Parts
Resistors

R1 4M7
R2 2K2
R3,8 1K0
R4 47K
R5,6,7 4K7

Capacitors

C1,2,3,4,5 100n
C6,7 22p
C8 2n2
C9 10u
C10 47u

Semiconductors

IC1 74HCT04
IC2 74HCT4060
IC3 CDP6402 (Maplin QQ04E)
IC4 74LS32
IC5 74HCT4024
IC6 74HCT4040
IC7,8,11,12,13,14 74LS245
IC9,10 43256-10 or 62256-10
D1,2,3 1N4148

Miscellaneous

XT1 2.4576MHz
SK1 9 or 25 way D connector
SK3 DC INPUT
SW1 Push to Make
SW2 4 pole 3 way rotary
SW3 and SW4 one 4 pole 3 way rotary

PCB, Case, knobs, wire, ribbon cable, two 28 way DIL ribbon connectors

Update
The Harris CDP6402 may be replaced with a Harris HD6402.

	Eprom Emulator
	How it Works
	Construction
	Testing
	The Case
	Software
	Emulating
	Parts
	Update

