
Eprom Programmer Mark 1
Originally published by Paul Stenning in ETI, January and February 1993

There has long been a requirement for a cheap straight-forward EPROM Programmer, suitable for
occasional home use, without the extra features found on many commercial units. The EPROM
Programmer presented here will program the standard 27 family of devices, from 2716 to 27512,
and can be used with any computer which has an RS232 serial port. I have avoided the usual "Catch
22" situation of requiring a programmed EPROM to make the EPROM programmer work! This
design uses readily available components to reduce the likelihood of obsolescence.

The unit is powered from an external PSU, since this is cheaper than buying the individual parts!
One of the low cost unregulated types with an integral mains plug is suitable, providing it is capable
of supplying between 10 and 18 Volts DC at 500mA without too much ripple, the voltage regulator
U21 will run cooler if the voltage is nearer the lower end of this range. The types sold for powering
electronic keyboards appear to be the most suitable. The prototype is powered by an old Sinclair
ZX81 PSU (type UK1200).

The programmer itself is dumb and is fully controlled by the host computer via the serial port.
Control software can be written in BASIC, and a suitable listing for IBM PC compatible computers
is given later. Additional software listings are given for initial testing, and to convert to and from
standard Intel-HEX files. A disk is available from the author (downloadable as a zip file from this
website), containing these programs, as well as comprehensive menu driven control software and a
few useful utilities.

Please note that the programming algorithms used may not be exactly as specified in some EPROM
manufacturer's data sheets. Because of this the unit cannot be guaranteed to program every device
successfully, however no problems have been experienced to date.

Circuit Operation
The circuit may appear complicated initially, however it comprises of several relatively straight-
forward sections. It is not necessary to understand the operation of the circuit to build and operate
the unit with the software given, however a good understanding is most useful if you wish to write
your own control software.

Note that when a number is followed by an "h" in the following description, for example 27h, it is a
hexadecimal number, and when a number is followed by a "b" it is binary, other numbers are
decimal. Any signal name which is followed by a "-", for example STROBE-, is active low, on the
circuit diagram this will be shown with a bar over the name.

Useful information on EPROM pin-outs and programming requirements can be found on pages
498-499 of the 1993 Maplin catalogue, the project was designed around this data (note that the
Maplin programming information for the 2732 is incorrect).

U2 and surrounding components generate the Baud Rate clock signal (CLOCK1) for U3, with the
rate selectable by LK1. The CLOCK2 signal is used to produce the programming timing pulses, see

later. U3 is a CDP6402 (Maplin QQ04E) "Universal Asynchronous Receiver/Transmitter" (UART).
In this application it is configured for 8 data bits, 1 stop bit, no parity checking. Note that unused
pin 2 is taken low, this pin is used on the RCA CDP1854 to select standard operation mode, this
device is otherwise pin compatible can therefore be used in place of the 6402. U3 is reset by U4:A
and associated components.

When serial data is received on pin 20 of U3, it is converted to a parallel output on pins 5-12 (R0-
R7), and pin 19 goes high. A short time later (set by R4 and C8) pin 18 is taken low, which clears
the high on pin 19. The pulse so generated on pin 19 is referred to as the STROBE signal, and
indicates to other parts of the circuit that data has been received and is valid.

If pin 23 of U3 (SEND) is pulsed low, data on pins 26-33 (D0-D7) is transmitted in serial form on
pin 25.

U1 is the serial line driver/receiver, which converts RS232 standard serial signals to/from standard
5V TTL levels. This IC contains voltage convertors to produce the required transmission voltages
(+/- 9V) from a single +5V supply.

In this application the 8 bit received data is used as 4 data bits on R0-R3 and 4 control bits on R4-
R7. 3 of these control lines (R4-R6) are taken to a "3 To 8 Line Decoder", U5. The STROBE signal
is taken to one of the Enable lines on U5, thereby causing the outputs from this IC to be short
pulses. For example, if 00h is received, lines R4-R6 will be low, STROBE will pulse high and
consequently pin 15 of U5 will pulse high and the remaining outputs will stay low.

The remaining control bit (R7) controls the power to the EPROM, when it is high all power is
removed from the EPROM socket so the device can be inserted or removed. When the device is
being read or programmed this line is taken low.

The 4 data lines are taken to the inputs of 4 "Quad D-Type Latches", U6-U9. The Latch Enable
lines on these IC's are connected to 4 of the outputs of U5 (Y0-Y3). Data can therefore be stored in
these latches by sending the required data on lines R0-R3 and the latch number (0-3) on lines R4-
R6. The data will be continuously available on the latch output lines. Referring back to the previous
example, if 00h is received, lines R0-R3 will all be low, and line Y0 will pulse high, storing 0h
(0000b) in U6. Similarly sending 35h will store 5h (0101b) in U9

Latch U6 is used to hold the least significant nibble (4 bits - half a byte) of the data which will
ultimately be programmed into the EPROM, whilst U7 holds the most significant nibble. U8 holds
the EPROM type information (see later), and U9 holds 4 setup bits. Bit 1 of U9 controls whether the
unit is in Read or Write (Program) mode, bit 2 sets the programming pulse length to either 1 or 40
milliseconds, bit 3 sets the programming voltage to either 12 or 21 volts, and bit 4 sets the supply
voltage whilst programming to either 5 or 6 volts. Note that the latches have active-high and active-
low outputs, and one or both may be used.

The data outputs from U6 and U7 are taken to a tri-state buffer (U10), which in turn drives the
EPROM data lines. U10 is controlled by the R/W- line, such that it's outputs are enabled in Program
mode and tri-state in Read mode.

The EPROM data lines are also connected to the data input lines on the UART (U3), and the Y7
output from U5 is connected to pin 23 of U3 (SEND). Therefore if 70h is received, the data

currently on the EPROM Data Lines is transmitted back along the serial interface to the computer.

The EPROM Address lines are controlled by counters U11 and U12. These are connected to lines
Y4 and Y5 from U5, and are therefore cleared to 0000h by sending 40h and the count is
incremented by sending 50h. This approach is quicker than having to send the actual address each
time since it only requires one byte to be sent along the serial link.

Line Y6 from U5 (PROG) is used to start a programming pulse. The programming pulse (either
1mS or 40mS) is produced by dividing down the CLOCK2 signal. This signal has a frequency of
19.2KHz (2.4576MHz divided by 128), which equates to a period of 52.1uS. This is fed to counter
U13, which is normally held reset by the Set/Reset flip-flop built from U15:C and U15:D. When the
PROG line pulses high the flip-flop changes state and the counter starts counting the CLOCK2
pulses. If a 1mS pulse is required, pin 5 of U14:A will be high and pins 12 and 13 of U14:B will be
low. When the count reaches 19 (52.1uS x 19 = 989.9uS), all the inputs of U14:A will be high, it's
output will therefore go low, changing the state of the flip-flop again, via U16:B, and resetting the
counter. A 0.99mS pulse will therefore be present on the output of the flip-flop, 0.99mS being well
within the 1mS +/- 5% specification. If a 40mS pulse is required U13 counts 768 CLOCK2 pulses
(52.1uS x 768 = 40.01mS).

The PROG PULSE and STROBE signals are coupled via U18:A and U1 to the RS232 CTS (Clear
To Send) line. This prevents the host computer from sending further data whilst a program pulse is
occurring or while STROBE is still high. This means that data can be sent as fast as possible and no
delays are needed in the software.

PROG PULSE- is coupled with the SEND signal to U3 by U16:A. This prevents the SEND signal
getting through whilst PROG PULSE- is low. This situation will never occur in normal use,
however during initialisation the software requests a 40mS program pulse immediately followed by
a SEND. If the RS232 CTS line is present and working then data will be sent, since the CTS line
will stop the computer sending the SEND request until after the prog pulse has finished. If CTS is
not working the SEND request will be sent immediately but no data will be returned due to U16:A
stopping the SEND pulse reaching U3. The software notes the lack of received data, prints a
warning and then adds delays itself to allow for the program pulse. You should try to get CTS
working properly as there will be a significant speed penalty otherwise.

We now come to the connection switching required for the different EPROM types. The table below
shows the pin-outs for the 6 types of EPROM this unit will program. 2716 and 2732 are 24 pin
devices and fit into pins 3 to 26 of the EPROM socket, the pin-outs shown below relate to the
socket, not the device.

PIN 2716 2732 2764 27128 27256 27512

 #1 ** ** VPP VPP VPP A15
 2 ** ** A12 A12 A12 A12
 3 A7 A7 A7 A7 A7 A7
 4 A6 A6 A6 A6 A6 A6
 5 A5 A5 A5 A5 A5 A5
 6 A4 A4 A4 A4 A4 A4
 7 A3 A3 A3 A3 A3 A3
 8 A2 A2 A2 A2 A2 A2
 9 A1 A1 A1 A1 A1 A1
 10 A0 A0 A0 A0 A0 A0
 11 D0 D0 D0 D0 D0 D0
 12 D1 D1 D1 D1 D1 D1
 13 D2 D2 D2 D2 D2 D2
 14 GND GND GND GND GND GND
 15 D3 D3 D3 D3 D3 D3
 16 D4 D4 D4 D4 D4 D4
 17 D5 D5 D5 D5 D5 D5
 18 D6 D6 D6 D6 D6 D6
 19 D7 D7 D7 D7 D7 D7
#20 CE/PP+ CE/PP- CE CE CE/PP- CE/PP-
 21 A10 A10 A10 A10 A10 A10
#22 OE OE/VPP OE OE OE OE/VPP
#23 VPP A11 A11 A11 A11 A11
 24 A9 A9 A9 A9 A9 A9
 25 A8 A8 A8 A8 A8 A8
#26 VCC VCC NC A13 A13 A13
#27 ** ** PP- PP- A14 A14
 28 ** ** VCC VCC VCC VCC

** = No Pin
NC = No Connection
PP+ = Program Pulse, Positive Going
PP- = Program Pulse, Negative Going
OE = Output Enable (Active Low)
CE = Chip Enable (Active Low)
VPP = Programming Voltage
VCC = Supply Voltage
GND = Ground (0V)

It can be seen from the above that most of the pins are the same for all devices. Only 6 pins require
special attention, these are 1, 20, 22, 23, 26 and 27, and are marked with a "#" next to the pin

number.

The four MODE lines from U9 control the function of these six pins and are set up by the software
to suit the EPROM type required. Note that two of the active-low lines are also used. The table
below shows the logic levels on each of these lines, for each of the 6 types of EPROM, together
with the code that needs to be sent to select that type.

EPROM MODE LINE SETUP
TYPE A B C C- D D- CODE

2716 1 1 1 0 1 0 2Fh
2732 1 0 1 0 0 1 25h
2764 1 1 0 1 0 1 23h
27128 1 1 0 1 0 1 23h
27256 1 0 0 1 0 1 21h
27512 0 0 0 1 0 1 20h

I will now describe what this means for each type of EPROM.

2716:

PIN 1 - not used.

PIN 20 - MODE B and MODE D are both high, so U17:B pin 6 remains high, U16:C pin 8 follows
PROG PULSE, as does U17:C pin 8 which is coupled via D6 to PIN 20. PIN 20 is only pulled up in
Program mode, so in Read mode it is permanently low.

PIN 22 - MODE A and MODE D are both high, so U15:B pin 6 is low and Q1 and Q2 remain off.
R-/W is coupled to the pin via D2.

PIN 23 - MODE D is high, so Q5 and Q6 are on, coupling VPP to PIN 23.

PIN 26 - MODE C is high, so Q7 and Q8 are on, coupling V+ to PIN 26.

PIN 27 - not used.

2732:

PIN 1 - not used.

PIN 20 - MODE B and MODE D are both low. U16:C pin 8 will remain low and U17:B pin 6 will
follow PROG PULSE. U17:C pin 8 will therefore be PROG PULSE inverted, and is coupled via D6
to PIN 20. PIN 20 is only pulled up in Program mode, so in Read mode it is permanently low.

PIN 22 - MODE D and MODE C- are both low and MODE A is high, so U15:B pin 6 is high. This
switches on Q1 and Q2, coupling VPP to PIN 22

PIN 23 - MODE D is low, so Q5 and Q6 remain off. A11 is coupled to PIN 23 via D4.

PIN 26 - as 2716.

PIN 27 - not used.

2764 and 27128:

PIN 1 - MODE A is high. This switches on Q3 and Q4, coupling VPP to PIN 1.

PIN 20 - MODE B is high and MODE C is low. U16:C pin 8 remains low and U17:B pin 6 remains
high, therefore

U17:C pin 8 remains low.

PIN 22 - MODE A and MODE C- are both high, so U15:B pin 6 is low and Q1 and Q2 remain off.
R-/W is coupled to PIN 22 by D2.

PIN 23 - as 2732.

PIN 26 - MODE C is low so Q7 and Q8 remain off. A13 is coupled to PIN 26 by D5. Note that in a
2764 EPROM there is no connection to PIN 26.

PIN 27 - MODE B is high and A14 will remain low since it is outside the addressing range. U17:D
pin 11 will therefore follow PROG PULSE-.

27256:

PIN 1 - as 2764.

PIN 20 - as 2732.

PIN 22 - as 2764.

PIN 23 - as 2732.

PIN 26 - as 2764.

PIN 27 - MODE B is low so U16:D pin 11 will remain low. U17:D pin 11 will follow A14.

27512:

PIN 1 - MODE A is low so Q3 and Q4 will remain off. A15 is coupled to PIN 1 by D3.

PIN 20 - as 2732.

PIN 22 - MODE A is low so U15:B pin 6 will be high, switching on Q1 and Q2, coupling VPP to
PIN 22.

PIN 23 - as 2732.

PIN 26 - as 2764.

PIN 27 - as 27256.

Note that D6 and D7 are germanium types, since silicon types would cause the logic 0 inputs to the
EPROM to be at the limit of the specifications.

The two logic gates which would otherwise be unused, are used to control Read and Program
LED's. U18:B pin 6 goes low when R-/W and ON-/OFF are both low, lighting D9 (Read) via Q10,
whilst U18:C pin 8 goes low when R/W- and ON-/OFF are low, lighting D8 (Program) via Q9.
When both LED's are off it is safe to fit or remove the EPROM, the other lines would have been set
low by the software before taking ON-/OFF high.

U21 is the main 5 Volt regulator and powers all the logic IC's. D11 protects the whole circuit against
reverse polarity, since it is easily possible to reverse the polarity on the sort of PSU used. LED D10
indicates that the unit is powered up.

U20 supplies the power to the EPROM, and is enabled by the ON/OFF- line via Q17 and Q18. Q19
raises the GND pin of U20 by 1 Volt, giving 6 Volts. When 5 Volts is required Q19 is shorted out by
Q20 controlled by U18:D, this happens when 5V/6V- or R/W- is low.

U19 is a step-up switching regulator which produces the programming voltage required. The
voltage is set by shorting out sections of the resistor chain with transistors. 2716 EPROMs require
25 Volts, not 21 Volts, so the MODE D- line is used to set this. The R-/W line controls Q15 and Q16
which connect the power to the EPROM when the unit is in Program mode.

Construction
The construction of this PCB is rather fiddly and great care should be taken. All the components
except the power input socket (SK2) and the RS232 socket (SK3) are mounted on the PCB. This is
a double sided board, about 210 X 88mm in size. Note that the holes in the PCB are not plated
through. The PCB overlay is shown in figure ## Due to the complexity of the PCB, the construction
should be carried out in the following order.

Firstly enlarge U20 and U21 mounting tab holes, L1 mounting hole and the corner fixing holes to
3mm. Also enlarge the holes for presets RV1-4 to 1.2mm, and the holes for U20, U21, D11 and the
Veropins to 1.0mm.

Next fit the through-board connections in the positions marked with a single small circle on the
overlay, there are 121 in total. Tinned copper wire should be used here, suitable pins may be
available but check they will fit the holes in the PCB (0.8mm) before ordering. Now fit the
transistors, resistor network and non-polarised capacitors. The resistor network must be fitted the
correct way round as shown on the overlay. Note that many of the component leads will also need
to be soldered on the top of the PCB - wherever there is a pad it should be soldered to. This also
applies to the resistors, diodes and presets which can now be fitted. Note that the presets can be
fitted on the back of the PCB if required, this may ease adjustment once the PCB is mounted in the
case.

Next fit all the DIL IC's except U3 and U19. Note that since many connections need to be soldered
on the top of the PCB it is not possible to use conventional IC sockets, although some of the more
expensive turned pin types may be suitable. IC sockets should now be fitted in positions U3, U19
and SK1.

It is now possible to fit the remaining components in any convenient order. Temporarily solder the
LED's at the full length of their leads, and adjust them later when the PCB is being fitted in the
case. L1 should be mounted with an M3 nut, bolt and shake-proof washer (do not over-tighten) or a
dab of glue. U20 and U21 should be mounted with M3 nuts and bolts, U21 would benefit from a
small heatsink or bracket of some sort. Veropins should be fitted for the off-board connections. Fit a
wire link in LK1 position, between the lower two homes for 9600 baud, or as shown on the overlay
for other rates.

Testing
The PCB should be tested before fitting into the case. Do not fit U3 or U19 yet. Connect the unit to
a power supply via a test meter set to 500mA DC or greater. Switch on and watch the meter, if the
reading exceeds 200mA switch off immediately and find out why! Make a note of this current. If all
is well remove the meter and connect the power directly. Now set the meter to 10V DC or
thereabouts and check VCC on the power pins of one of the TTL IC's, this should be between 4.75V
and 5.25V. Also check for about +9V on pin 2 of U1 and about -9V on pin 6 of U1.

If you have a 'scope, look at the DC input and check that the troughs of any ripple do not go below
10V. If there is significant ripple from the power supply (greater than about 1V pk-pk), try
connecting a 1000uF 25V capacitor directly across the DC input.

You could now fit the remaining IC's, adjust the voltages, and try the unit in use - and probably get
away with it! However I would strongly urge that the following step-by-step checks are carried out
to ensure the unit is fully functional. A 'scope or logic probe would be most useful, although most of
the checks can be done with just a test meter.

If you have an IBM PC or compatible, start BASICA or G.W.BASIC (or QBASIC if you have MS-
DOS 5), and enter the test program given in Listing 1 (if you have obtained the disk from the author
simply run TEST1.EXE, which is the compiled version). If you have a different computer you may
have to modify or re-write the program as necessary, the notes in the "How it Works - Software"
section may be of some help. It may be worth trying to get access to a PC, to avoid having too many
unknowns!

Insert U3 (the 6402), connect the programmer to the computers RS232 serial port (see fig ##),
switch it on and then run the software. The software does nothing more exciting than wait for you to
enter a 2 digit hex number (followed by <Enter>) and then sends it to the programmer. It then
attempts to read back a number, if it's successful it prints the number otherwise it prints **. To exit
just press <Enter> on it's own.

Type "FF" (don't type the quotes, and follow it with <Enter>). Check the logic levels on pins 5 to 12
of U3, they should all be logic 1. Note that logic 1 is anything over 3.5V and logic 0 is anything
under 0.5V. Now type "00" and the logic levels should all be 0. To be certain, type "55" and the
levels should be 01010101, then type "AA" and the levels should be 10101010. If you have a 'scope
or logic probe check for a short positive going pulse on pin 19 whenever a number is sent.

The most likely cause of problems here is the RS232 wiring. Are you using the right port (COM1)
on your PC? You can edit line 70 of the program if you are using a port other than COM1. Have you
set LK1 to 9600 (or lower if your type of computer won't work at 9600)? Try swapping wires 2 and
3 in the RS232 lead. If the program appears to lock try disconnecting the CTS wire (Ctrl-Break will
stop the software in this case). Check the link settings on your serial communications port - if you
have the "Everex EV170 Magic I/O Card" (used in many early XT and 286 AT machines) and can't
get it to work, write to the author!

Type "0F" and check pins 9, 10, 15 and 16 of U6, they should all be at logic 1. Now type "00" and
they should all be at logic 0. Typing "05" should give 0101 and "0A" should give 1010. Now repeat
the above, replacing the first character with a "1" and checking the levels on U7, then "2" and U8,

and finally "3" and U9.

Now type "00", "10", "30" then "70". After you typed the "70" the screen should show "00", the
others should have given "**". The "Program" (red) LED should also be on. This set "00" on the
data bus, selected write mode to enable U10, then read the data back down the RS232 link. The
most likely cause of problems here is the RS232 link again.

Now type "31" then "70". The screen should show "FF" and the "Read" (yellow) LED should be on.
U10 is now disabled so it's outputs are tristate and pulled up by RN1.

Typing "30" then "70" should return "00" again. Typing "0F", "1F" then "70" should return "FF",
typing "05", "15" then "70" should give "55", and typing "0A", "1A" then "70" should give "AA".
Also check that the appropriate data is actually reaching the EPROM socket pins as shown below:

Data Line D7 D6 D5 D4 D3 D2 D1 D0
Socket Pin 19 18 17 16 15 13 12 11

Type Expected Logic Level
"00", "10" 0 0 0 0 0 0 0 0
"05", "15" 0 1 0 1 0 1 0 1
"0A", "1A" 1 0 1 0 1 0 1 0
"0F", "1F" 1 1 1 1 1 1 1 1

Now we come to the address bus. Type in the program given in Listing 2 (save the other program
first as it will be needed again). The program configures the programmer for 27512 EPROM's so all
16 address lines are bought to the EPROM socket and should be checked there. The program clears
the address counter and then repeatedly increments the count, pausing at selected points to enable
the checks to be made, as shown below:

Addr Line A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
Socket Pin 1 27 26 2 23 21 24 25 3 4 5 6 7 8 9 10

Count Expected Logic Level
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21845 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
43690 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
65535 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The logic levels should be checked on the pins of the EPROM socket when the program pauses, if a
level is incorrect check on the appropriate pin on U11 or U12, then trace the fault as necessary. Note
that the program may run quite slowly. A complied version (TEST2.EXE) which runs considerably
faster is on the disk available from the author.

Now re-load the first test program. Connect a 'scope or logic probe to U15 pin 11. Type "30". Now
when you type "60" you should observe a 40 millisecond positive going pulse. Move the probe to
pin 8 of U15 and the pulse should be negative going. Now type "32" and repeat the above checks,

the pulse should now be 1 millisecond. With a logic probe you will probably only be able to detect
the presence of the pulse and will have to assume it is the correct length, with a test meter you
probably won't be able to see anything!

Now switch off and insert U19. Connect a test meter set to about 500mA DC in line with the power
input and switch back on. If the current is more than 100mA greater than it was before switch off
and find out why! The most likely cause is a short circuit on VPP somewhere. If all is well remove
the meter and connect the power directly. Set all four presets to the centre position.

Set a test meter to the 10V DC range and connect between pins 28 (+ve) and 14 (-ve) of the
EPROM socket. Type "23" then "38", the meter should read 5V +/-0.25V. Now type "30" and the
reading should rise, adjust RV1 for a reading of 6.1V +/-0.1V. Type "80" and the voltage should
drop to zero. Set the meter to the 30V DC range and transfer the +ve meter probe to pin 1 of the
EPROM socket. Type "34" and then adjust RV2 for a reading of 12.6V +/-0.1V. Type "30" and
adjust RV3 for 21V +/-0.25V. Type "2F" and adjust RV4 for 25V +/-0.25V. Type "31" and the
voltage should drop to zero.

The only thing left to check now is the various configurations for the different types of EPROM's.
As described in "How it Works", the functions of six of the EPROM socket pins vary depending
upon the type of EPROM. The address lines have already been checked at the EPROM socket, as
has the programming voltage to pin 1. The checking of the remaining combinations is detailed
below.

Type "40" to clear the address counters. Connect a 'scope or logic probe to pin 20 of the EPROM
socket. Type "30" then "2F". A 40 millisecond positive going pulse should be observed when "60" is
typed. Type "20", and the pulse when typing "60" should now be negative going. Now type "23"
and the line should remain at logic 0 when "60" is typed. Move the probe to pin 22. Type "2F" then
"31" and the line should be at logic 0. Type "30" and it should go to logic 1. Now type "20" and it
should rise to 21V. Move the probe to pin 23 which should be at logic 0. Type "2F" and the line
should rise to 25V. Move the probe to pin 26, which should be at 6V. Type "20" and it should go to
logic 0. Finally move the probe to pin 27 and type "23". A 40 millisecond negative going pulse
should be seen when you type "60".

If you have reached the end of all this successfully you can be confident that your EPROM
programmer is 100% functional!

The Case
The prototype was mounted in a plastic case (type MB6) having external dimensions of 220 X 150
X 64mm. The removable panel is considered to be the bottom, and may be fitted with self-adhesive
feet if required. The top surface needs cut-outs for the EPROM ZIF (Zero Insertion Force) socket
and the LED's, as well as four fixing holes for the PCB. You may also wish to make four small
holes to enable adjustment of the presets.

The rectangular cut-out for the ZIF socket may be made by drilling a line of shall holes around the
edge then breaking out the centre part and filing to shape. Take care not to file the hole too large or
the result will look untidy! The socket is raised above the PCB by stacking up a number of 28 pin
DIL IC sockets, three were used on the prototype. If the result feels insecure, the sockets may be

held together with a suitable adhesive.

Position the PCB and mark the positions of the four fixing holes and then measure the positions of
the three LED holes. The first LED is 4mm down and 6mm to the left of the top right fixing hole
(view from outside the box), the other two are spaced below at 9mm intervals. The fixing holes are
3mm in diameter whilst the LED holes are 5mm. Also drill suitable holes in the rear of the case for
the DC input socket and the RS232 cable or connector. On the prototype a 3.5mm jack socket was
used for power (since this matched the plug on the PSU), and the RS232 cable passed through a
hole fitted with a grommet. Choose connectors that are not likely to come unplugged accidentally!
The case may now be marked with rub-down transfers or similar if required.

Solder suitable lengths of wire to the PCB for the off-board connections and insert the LED's
through the holes in the PCB (do not solder yet). Mount the PCB in the case using M3 screws, nuts
and spacers, then position the LED's so that they slightly protrude through the holes and solder them
into place. Complete the interwiring (see Fig ##) and assemble the case. If an additional smoothing
capacitor was found necessary whilst testing, this may be mounted across the pins of the DC input
socket, or on the rear of the PCB in parallel with C21.

Software Description
The following information describes the operation of the software shown in Listing1, Listing 2 and
Listing 3 (these listings are included in the software download).

In the following section a reasonable understanding of programming in BASIC is assumed. The
software was written for Microsoft BASICA, as supplied with Compaq DOS 3.31. It has also been
tested with QBASIC supplied with MS-DOS 5 and with Microsoft QuickBASIC V4.5. Users of
other BASIC dialects may have to modify the code to suit.

The first test program is shown in Listing 1. Line 70 opens COM1 (the first serial port) at <9600>
Baud, <N>o parity checking, <8> data bits, and <1> stop bit. The timeout on CTS (clear to send) is
set to 200 milliseconds, CD (carrier detect) and DSR (data set ready) are disabled. Another serial
port could be used in place of COM1 if required, by editing this line.

Line 80 accepts an input from the keyboard, the semicolon causes the cursor to remain on the same
line after <Enter> is pressed. Line 90 terminates the program if no value is entered. Line 110
converts the entered data from a two character string to a single byte and sends it down the serial
port. Note that in BASICA Hex numbers are indicated by preceding them with "&h", hence the
value of "&hFF" is 255.

Lines 120 to 170 responsible for waiting up to 0.1 seconds for data to be sent back up the serial port
and displaying it. TIMER is a BASICA variable which contains the number of seconds since
midnight to 2 decimal places (updated 18.2 times per second), this is used in lines 120 and 130 to
control the timeout. EOF(1) will have a value of 0 if data is present, otherwise it will be 1. Line 140
prints "**" if a timeout has occurred, otherwise lines 150 to 170 read the value, convert it from a
single byte to a two character string (using the HEX$ function) and print it. Line 180 loops back
round for another go!

The second test program, shown in Listing 2, is used to test the address counter system. This clears

the counters and then repeatedly increments them, by sending the appropriate codes. The operation
should be evident, given the information above.

The main control program is shown in Listing 3. This software is about the minimum required to
make sensible use of the programmer. It is written in a manner which should make the functioning
relatively easy to understand, and is not intended to be an example of good programming!

The subroutines at lines 7000 to 7060, and 8000 to 8020 fetch a byte from the serial port and send a
byte to the serial port respectively. Their operation is as described in the Listing 1 details above.
These subroutines are called frequently by the remainder of the program.

Line 100 opens the serial communications as before. Lines 120 to 300 attempt to establish
communications with the programmer and test whether or not the CTS connection is present and
working. Line 120 sets the program pulse duration to 40 milliseconds, initiates a program pulse
immediately followed by a send instruction. If CTS is present the send instruction will not be sent
until the program pulse has finished so data will be received, otherwise no data will be sent (see
"How it Works - Hardware"). The integer variable PAUSE% is set to 1 if there is no CTS line,
causing the software to add suitable delays itself - note that this will slow the operation of the
software quite drastically.

Lines 150 to 280 send values to the data latches and then attempt to read them back - this is to
establish that communication is reliable.

Lines 310 to 780 request information from the user regarding the EPROM type and programming
requirements, whilst lines 790 to 820 set up the programmer accordingly.

Lines 1000 to 1230 form the main menu. Note that CHR$(27) gives the value of the Escape key.

The Read, Program and Verify sections use ASCII-HEX data files in the programmers own format
(conversion programs to and from Intel-HEX are given later). The format is easy to produce and
edit manually.

The first line is the name of the EPROM type - "2716", "2732" etc. The remaining lines each start
with the address in Hex (4 digits), followed by four spaces, followed by 16 bytes in Hex (2 digits)
each separated by one space. The addresses must be sequential, starting at 0000. A small section is
shown below:

2716
0000 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
0010 F0 23 DE F4 5A 22 3D 7E EA A2 C0 C0 38 24 AA 00
: :
: :
07E0 00 23 48 DE 4A D7 E1 4C 9A 8B BB DE 09 FF FF FF
07F0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

It should also be noted that this format is not particularly efficient with disk space - the file for a
27512 will take up about 250K. A file compression utility, such as PKZIP or LHARC, will
dramatically reduce the size for storage if disk space is a problem.

With the information that has gone before, the operation of the remaining sections of the software

should be fairly apparent.

The section from 2000 to 2300 reads the contents of the EPROM to a file. Lines 2100 and 2110
give a quarter second delay to allow the power supply rails to come up.

The section from 3000 to 3390 programs the EPROM from the contents of a file. Lines 3270 to
3290 add a delay (100 milliseconds) to allow for the programming pulse if the CTS line is not
present, this will occur whether the programming pulse is 1 or 40 milliseconds. This delay may be
optimised but it would be better to get CTS working in the first place.

The section from 4000 to 4330 verifies (or compares) the contents of the EPROM with a file, whilst
the section from 5000 to 5240 checks the device is blank (all locations contain "FF"). The section
from 6000 to 6220 allow the programming voltages to be checked.

The programs given in Listing 4 and Listing 5 convert the EPROM programmer data files to and
from standard Intel-HEX data files respectively. This is not the place for an explanation of the Intel-
HEX file format, so please just accept that the programs work! Details of Intel-HEX and other
standard file formats are on the disk available from the author, together with various conversion
programs etc.

In Use
The control software is shown in Listing 3 and is suitable for an IBM PC or compatible machine
running BASICA, G.W.BASIC or QBASIC. This software is about the minimum required to make
sensible use of the programmer. section.

If BASICA or G.W.BASIC is being used, the program will run fairly slowly. This is a limitation of
interpreted BASIC. QBASIC supplied with MS-DOS 5 is a much more advanced product and a
good deal better in this respect.

Additional (faster) software is supplied on the disk available from the author (downloadable from
this website).

An EPROM must not be inserted or removed if the "Program" or "Read" LED is lit, or if the
programmer is configured for a different type of device. 24 pin EPROM's must be fitted in the
lower pins (3-26) of the socket. In all cases pin 1 is upwards. Failure to observe the above may
result in damage to the EPROM or (less likely) the programmer.

The programmer should be switched on and connected to COM1 (RS232 serial port 1) on the
computer. Start the software and the "Program" LED will light. Once successful communication has
been established the program will request information about the type of EPROM and the
programming method required. See the table below or consult the manufacturers data book.

--
EPROM Programming Supply Programming
Type Number Voltage Voltage Pulse Length
--
2716 & 27C16 25V 5V 40mS
2732 & 27C32 21V 5V 40mS
2764 21V 5V 1mS
27C64 & 2764A 12.5V 5V 1mS
27128 21V 5V 1mS
27C128 & 27128A 12.5V 5V 1mS
27256 & 27C256 12.5V 6V 1mS
27512 & 27C512 12.5V 6V 1mS
--

Some 2764 and 27128 types require a complex arrangement of programming pulses however a
single 1mS pulse will usually suffice. If in doubt or if problems are experienced use 40mS.
Although some 2716 and 2732 devices will program successfully with a 1mS programming pulse,
this is not recommended for final EPROM's, but may prove useful when testing software etc.

The use of the "A" suffix on 12.5V 2764 and 27128 types appears to be less than standard, it is
suggested that all 2764's and 27128's should be tried on 12.5V first, since 21V will destroy a 12.5V
device.

Once these selections have been made the "Program" LED will extinguish and the main menu will
appear.

"Read" (menu option 1) reads the contents of an EPROM to a file. Note that the file format used is
non-standard, however programs to convert to and from the Intel-HEX standard are given in
Listings 4 and 5. The advantage of the file format is that it is easy to generate and edit manually.

"Program" (option 2) programs the EPROM from a file. The EPROM is not blank checked before
programming or verified afterwards, these operations should be done from the main menu
individually if required.

"Verify" (option 3) compares the contents of the EPROM with a file, and "Blank Check" (option 4)
does as it's name suggests! Both these options report the number of locations that failed.

"Change Configuration" (option 5) re-starts the software so the EPROM type and programming
method can be changed.

"Adjust Voltages" (option 6) allows the programming voltages to be checked and adjusted if
required.

Happy programming!

Parts List
RESISTORS (all 1/4W 5% or better)

27 R1,6-19,27-33,36-38,41,42 10K
1 R2 4M7
1 R3 2K2
1 R4 1K0
1 R5 47K
2 R20,21 22K
3 R22,23,40 330R
1 R24 0R47 (or 2 x 1R0 in parallel)
1 R25 1K2
1 R26 8K2
1 R34 5K6
1 R35 1K5
1 R39 470R

1 RN1 100K x 8 SIL resistor network
1 RV1 470R or 500R horizontal preset
3 RV2-4 4K7 or 5K0 horizontal preset

CAPACITORS

8 C1-5,9,15,16 10u 16V radial
2 C6,7 22p 0.2" pitch ceramic
1 C8 2n2 0.2" pitch ceramic
1 C10 220p 0.2" pitch ceramic
1 C11 470n 0.2" pitch
1 C12 47u 35V radial
1 C13 47u 16V radial
2 C14,17 1u0 16V radial
9 C18-20,22-27 100n 0.2" pitch
1 C21 220u 25V radial

INDUCTORS

1 L1 470uH 2.3A bobbin type

SEMICONDUCTORS

1 U1 MAX232
1 U2 74HC4060
1 U3 CDP6402 (Maplin QQ04E)
1 U4 74HC14
1 U5 74HC238
4 U6-9 74HC75
1 U10 74LS244

2 U11,13 74HC4040
1 U12 74HC4024
1 U14 74HC20
1 U15 74HC00
1 U16 74HC08
2 U17,18 74HC32
1 U19 TL497
2 U20,21 7805

6 Q1,3,5,7,15,17 ZTX750/751/752
10 Q2,4,6,8,13,14,16,18-20 BC547/548/549
4 Q9-12 BC557/558/559

5 D1-5 1N4148 silicon signal diode
2 D6,7 OA47 germanium signal diode
1 D8 Red LED
1 D9 Yellow LED
1 D10 Green LED
1 D11 1N4001

MISCELLANEOUS

1 SK1 28 way ZIF socket
1 XT1 2.4576MHz crystal

Power Supply (10-18V DC @ 500mA), DIL IC sockets (1 x 40 way, 1 x 14 way and 3 x 28 way),
Heatsink for U21, PCB, Case type MB6, M3 hardware, Connectors for power and RS232, Veropins,
Tinned copper wire (24SWG) or through-PCB pins.

Small 0.47R resistors do not appear to be readily available - use two 1R0 components in parallel.

The software listed in this article, together with a comprehensive menu driven control program
(IBM PC or compatible only) is available. This program, together with the source code, is included
in the software available for downloadable from this website. The QuickBASIC Toolbox, required
for the menu program source code, is also available for download.

Updates
The Harris CDP6402 may be replaced with a Harris HD6402.

Nico van Rooijen has developed Windows based control software for this unit. This is included in
the software available for downloadable from this website.

	Eprom Programmer Mark 1
	Circuit Operation
	Construction
	Testing
	The Case
	Software Description
	In Use
	Parts List
	Updates

