PROJECT

A project as an aid
to other projects.
Paul Stenning
provides an excel-
lent design and an
invaluable aid when a pre-
programmed device is required.

here has long been a requirement for a cheap
straight-forward EPROM Programmer, suitable
for occasional home use, without the extra features
found on many commercial units. The EPROM
Programmer presented here will program the standard 27
family of devices, from 2716 to 27512, and can be used with
any computer which has an RS232 serial port. T have avoided
the usual “Catch 227 situation of requiring a programmed
EPROM to make the EPROM programmer work! This
design uses readily available components to reduce the
likelihood of obsolescence.

The unit is powered from an external PSU, since this is
cheaper than buying the individual parts! One of the low cost
unregulated types with an integral mains plug is suitable,
providing it is capable of supplying between 10 and 18 Volts
DC at 500mA without too much ripple, the voltage regulator
IC21 will run cooler if the voltage is nearer the lower end of
this range. The types sold for powering electronic keyboards
appear to be the most suitable. The prototype is powered by
an old Sinclair ZX81 PSU (type UK1200).

The programmer itself is dumb and is fully controlled by
the host computer via the serial port. Control software can be
written in BASIC, and a suitable listing for IBM PC compat-
ible computers is given later. Additional software listings
are given for initial testing, and to convert to and from
standard Intel-HEX files. A disk is available from the author,
containing these programs, as well as comprehensive menu
driven control software and a selection of useful utilities, see
Buylines for details.

Please note that the programming algorithms used may
not be exactly as specified in some EPROM manufacturer’s
data sheets. Because of this the unit cannot be guaranteed to
program every device successfully, however no problems
have been experienced to date.

HOW IT WORKS
HARDWARE

The circuit may appear complicated initially, however it com-
prises of several relatively straight-forward sections. If is not
necessary to understand the operation of the circuit fo build and
operate the unit with the software given, however a good under-
standing is most useful if you wish to write your own control software.

Note that when a number is followed by an *h" in the following
description, for example 27h, it is a hexadecimal number, and when
a number is followed by a “b” it is binary, other numbers are decimal.
Any signal name which is followed by a “*, for example STROBE-,
is active low, on the circuit diagram this will be shown with a bar over
the name.

Useful information on EPROM pin-outs and programming re-
quirements can be found on pages 498-499 of the 1993 Maplin
catalogue, the project was designed around this data (note that the
Maplin programming information for the 2732 is incorrect).

IC2 and surrounding components generate the Baud Rate clock
signal (CLOCKT) for IC3, with the rate selectable by LK1, The
CLOCK?2 signal is used to produce the programming timing pulses,
see later. 1C3 is a 6402 “Universal Asynchronous Receiver/Trans-
mitter’ (UART). In this application it is configured for 8 data bits, 1
stop bit, no parity checking. Note that unused pin 2 is taken low, this
pin is used on the RCA CDP1854 to select standard operation mode,
this device is otherwise pin compatible can therefore be used in
place of the 6402. IC3is reset by IC4:A and associated components.

When serial data is received on pin 20 of IC3, it is converted to
a parallel output on pins 5-12 (R0-R7), and pin 19 goes high. A short
time later (set by R4 and C8) pin 18 is taken low, which clears the high
on pin 19. The pulse so generated on pin 19 is referred to as the
STROBE signal, and indicates to other parts of the circuit that data
has been received and is valid.

If pin 23 of IC3 (SEND} is pulsed low, data on pins 26-33 (D0-D7)
is transmitted in serial form on pin 25.

ETI JANUARY 1993

e R o e e AR L e -
e e R

i e e S meee s g
s . . -
S - i

- -

. .

-

-

.

-

-

w
w
5
EEmE e] K 8
= m m *® ow
i o n & F
i v
o o - r 3
o
©«
WD 00 TN D@ Q
CECCCECCECE ETCCCCETOCD = =
MmoO@ooOomomoo mBBBBBBB - O
EECEEKELETT FRFERFFF
o«
.
ihTﬁ
T
g8 bEZZ § g 8 &
a g i D Qe i R L
5 oo _mn..mEOm a 2 ok aw |y m...ﬁT +
ETEETwWwW w o4 | S c =
A gdeccoccnio " PREEE €23 8cam |3 .
g2 wa%LLnIﬁ_ NESREEEE mT_ 25|l
55 5 b
=2 =
5 E200r el on el
@ Olgrcer & & = =
o | 2ot [&] o > (L] -3
- > & & i it
- 3 ol2|~|= 5 ﬁ_
(-] [+] e B S
) i
= o =" 82
3] ol 3
] L -
S\ F o b
ool <] of =] - 4 A =z N S «— _
o m = =
wn w0 (=N Ny
83586588853 2R 3 \F
= o Ll @
g &
3 e : m .|th
F b g= & I =]
5 g sl {1 s |8
3] B '
4 I
s ﬁ_ [1o
2
ﬁ 0 o o0 = o]
o
5 A Ay A\ A m <) mw 2 %
w w | o
-5 b= @& W _3 = I [&] -
= 4 Q o v} = n @
3 5] w2 u o >
b =1 = o 4 -1
ai . o n v L <
5§, o 8 A <
o (&7} ['4 -t
e] & ¢
Ly g =- — — — “a
[::] () o 1
Rm - E=2 COB L =
o 3 z gz o
m 5] H% n L]
-
: L= e
F m

A vo |15 >
] B vi 14 > :10
. c 2 » V2
| vs |12 > V3
] vs U 3 CLR-COUNT
| STROBE p—=Bid E1 vs (0 » INC-COUNT
i 44 g2 ve |2 » PROG
i E3 ¥7 —p» SEND
. = 74HC238
% Ic6 IC10a
§§ D1 o1 -]-ﬁ-.._.._i. AD Yo
| ol Al ¥
fi1 31 p2 o2 51 61 a2 v2
as A 81 a3 v3 |
D3 a3 2 e
prr] A Ban TS
D4 -
g LS 7415244
E1/2 o
e E3/4
74HCT5
ic7 IC10b
. D1 Qi :5 ;I; AD Y0
i o1 == Al ¥1
5 D2 a2 5 151 a2 ¥2
. @ H- 171 a3 Y3
D3 Q3
as - | 18} OE
D4 a1 2
as e— 7415244
EV2
E3/4
- 74HCTS
- 18
n
o t 2{ o1 a1 (e $ MODE A
Q; a1 H—
. D2 g -2 » MODE B
| 7 (4
i D3 a3 (2 » MODE C
o as i
i D4 a4 g I » MODE C
. 1831 g2 - I > E
- | MODE D
L vz)—E E3/4 i
- L moDED
- 74HCT5 . :
| icg l._—> A
e 16 =
- o LN - AW
L = g; TE_I 40mSAmS
- KL S ——
| b3 a3 |19 L3 40ms/ims
= e B TR s
D4 Q4
o f— I L3
E12 SVIEV
E3/4
o 74HCT5
o R7 1 0 S
= IC4e P ON/OFF
74HC14 St
b » ON/OFF
Ic13
(ST) —, YT a1 g
az
Q4 ==
Qs g
Q6 [r—
a7 f=i-
Q8 |=—li.
12
a9
aio 10
1 i 12
MR Qi2 - A
74HC4040
40mS/1mS
40mS/1mS

PROG PULSE <

IC11

13 12
INC-COUNT O PCLK ai

Q2

TAHC14 a3

Qs
Q6

a7

Qs

Qs

Qio

Qi
MR a1z

CLR-COUNT P

T4HC4040

IC12

12 _A12

PCLK Qa1
Q2

11 _A13

as

9__Al4

Q4
Qs
Qs
MR Q7

S

FFFF

T4HC4024

IC14b 8
74HC20

8 IC15¢
T4HCO00
10

PROG W

Fig. 2 EPROM Programmer Logic

— PROG PULSE

IC1 is the serial line driverireceiver, which converts RS232
standard serial signals tofirom standard 5V TTL levels. This IC
contains voliage convertors to produce the required transmission
voltages (+/- 9V) from a single +5V supply.

In this application the 8 bit received data is used as 4 data bits
on RO-R3 and 4 control bits on R4-R7. 3 of these control lines (R4-
R6) are taken to a *3 To 8 Line Decoder’, IC5. The STROBE signal
is taken to one of the Enable lines on IC5, thereby causing the
outputs from this IC to be short pulses. For example, if 00h is
received, lines R4-R6 will be low, STROBE will pulse high and
consequently pin 15 of [C5 will pulse high and the remaining outputs
will stay low.

The remaining control bit (R7) controls the power to the EPROM,
when it is high all power is removed from the EPROM socket so the
device can be inserted or removed. When the device is being read
or programmed this line is taken low.

The 4 data lines are faken to the inputs of 4 “Quad D-Type
Latches”, IC6-IC9. The Latch Enable lines on these IC's are
connected to'4 of the outputs of IC5 (Y0-Y3). Data can therefore be
stored in these latches by sending the required data on lines R0-R3
and the latch number (0-3) on lines R4-R6. The data will be
continuously available on the latch output lines. Referring back to
the previous example, if 00h is received, lines R0-R3 wil all be low,
and line YO will pulse high, storing Oh (0000b) in IC6. Similarly
sending 35h will store 5h (0101b) in IC9

Laich IC6 is used to hold the least significant nibble (4 bits - half
a byte) of the data which will ultimately be programmed into the
EPROM, whilst IC7 holds the most significant nibble. IC8 holds the
EPROM type information (see later), and IC9 holds 4 setup bits. Bit
1 of IC9 controls whether the unitis in Read or Write (Program) mode,
bit 2 sets the programming pulse length to either 1 or 40 milliseconds,
bit 3 sets the programming voltage to either 12 or.21 volts, and bit
4 sets the supply voltage whilst programming to either 5 or 6 volts.
Note that the laiches have active-high and active-low outputs, and
one or both may be used.

The data outputs from IC6 and IC7 are taken to a tri-state buffer
(IC10), which in turn drives the EPROM data fines. IC101is controlled
by the R/W- line, such that it's outputs are enabled in Program mode
and tri-state in Read mode. :

The EPROM data lines are also connected to the data input lines
on‘the UART (IC3), and the Y7 output from IC5 is connected to pin
23 of IC3 (SEND). Therefore if 70h is received, the data currently on
the EPROM Data Lines is fransmitted back along the serial interface
to the computer.

The EPROM Address lines are controlled by counters IC11 and
IC12. These are connected to lines Y4 and Y5 from IC5, and are
therefore cleared to 0000h by sending 40h and the count is
incremented by sending 50h. This approach is quicker than having
to send the actual address each time since it only requires one byte
to be sent along the serial link.

Line Y6 from IC5 (PROG) is used to start @ programming pulse.
The programming pulse (either 1ms or 40ms) is produced by dividing
down the CLOCK? signal. This signal has a frequency of 19.2kHz
(2.4576MHz divided by 128), which equates to a period of 52.11s.
This is fed to counter IC13, which is normally held reset by the Set/
Reset flip-flop built from IC15¢ and 1C15d. When the PROG line
pulses high the flip-flop changes state and the counter starts
counting the CLOCK2 pulses. If a Tms pulse is required, pin 5 of
IC14a will be high and pins 12 and 13 of IC14b will be low. When the

count reaches 19 (52.18 x 19 = 989.9us), all the inputs of IC14a will -

be high, it's output will therefare go low, changing the state of the flip-
flop again, via IC16d, and resetting the counter. A 0.99ms pulse wil
therefore be present on the output of the flip-flop, 0.99ms being well
within the 1ms +/- 5% specification. If a 40ms pulse is required IG13
counts 768 CLOCK2 pulses (52.1us x 768 = 40.01ms).

The PROG PULSE and STROBE signals are coupled via IC18a
and IC1 fo the RS232 CTS (Clear To Send) line. This prevents the
host computer from sending further data whilst a program pulse is
occurring or while STROBE is still high. This means that data can
be sent as fast as possible and no delays are needed in the software.

PROG PULSE- is coupled with the SEND signal to IC3 by IC16a.
This prevents the SEND signal getting through whilst PROG PULSE-
is low. This situation will never occur in normal use, however during
initialisation the software requests a 40ms program pulse immedi-
ately followed by a SEND. If the RS232 CTS line is present and
working then data will be sent, since the CTS line will stop the
computer sending the SEND request until after the prog pulse has
finished. If CTS is not working the SEND request will be sent
immediately but no data will be returned due fo IC16a stopping the
SEND pulse reaching IC3. The software notes the lack of received
data, prints a warning and then adds delays ftself to allow for the
program pulse. You should try to get CTS working properly as there
will be a significant speed penalty otherwise.

We now come to the connection switching required for the
different EPROM types. The table below shows the pin-outs for the
6 types of EPROM this unit will program. 2716 and 2732 are 24 pin
devices and fit into pirs 3 to 26 of the EPROM socket, the pin-outs
shown below relate to the socket, not the device.

It can be seen from the above that most of the pins are the same
for all devices. Only 6 pins require special attention, these are 1, 20,
22,23, 26 and 27, and are marked with a"#' next to the pin number.

The four MODE lines from 1G9 control the function of these six
pins and are set up by the software to suit the EPROM type required.
Note that two of the active-low lines are also used. The table below
shows the logic levels on each of these lines, for each of the 6 types
of EPROM, together with the code that needs to be sent to select that

type.

ETI JANUARY 199:

| EPROM MODE LINE SETUP to PIN 26.

LOREE A (B G G uDe CODE PIN 27 - MODE B is high and A14 will remain low since it is outside
2716 o i R e gﬁédgressing range. 1C17d pin 11 will therefore follow PROG
PRI B P B (e 8 e T %

I R e R s ,

Zieg T SEET0 e Dy RS
2056 0D S o N2 S
DISIR R0 0 i A0S oty N o

| will now describe what this means for each type of EPROM..
2716:
PIN 1 - not used.

PIN 20 - MODE B and MODE D are both high, so IG17b pin 6 remains

high, IC16c pin 8 follows PROG PULSE, as does IC17¢ pin 8 which
is coupled via D6 to PIN 20, PIN 20 is only pulled up in Program
mode, so in Read mode it is permanently low.

PIN 22 - MODE A and MODE D are both high, so IC15b pin 6 is low
and Q1 and Q2 remain off. R-W is coupled to the pin via D2,
PIN 23 - MODE D s high, so Q5 and Q6 are on, coupling VPP to PIN
23.

PIN 26 - MODE C is high, so Q7 and Q8 are on, coupling V+ to PIN
26.

PIN 27 - not used.

2732

PIN 1 - not used.

PIN 20 - MODE B and MODE D are both low. IC16¢ pin 8 will remain
low and U17:B pin 6 will follow PROG PULSE. IC17¢ pin 8 will
therefore be PROG PULSE inverted, and is coupled via D6 to PIN 20,
PIN 20 is only pulled up in Program mode, so in Read mode it is
permanently low.

PIN 22 - MODE D and MODE C- are both low and MODE A s high,
80 IC15b pin 6 is high. This switches on Q1 and Q2, coupling VPP
to PIN 22

PIN 23 - MODE D.is low, so Q5 and Q6 remain off. A11 is coupled
fo PIN 23 via D4.

PIN 26 - as 2716.

PIN 27 - not used.

2764 and 27128:

PIN1 - MODE Ais high. This switches on Q3 and Q4, coupling VPP
fo PIN 1.

PIN 20 - MODE B is high and MODE C is low. IC16c pin 8 remains
low and U17:B pin 6 remains high, therefore IG17¢ pin 8 remains low.
PIN 22 - MODE A and MODE C- are both high, so IC15b pin 6 is low
and Q1 and Q2 remain off. R-/W is coupled to PIN 22 by D2.

PIN 23 - as 2732,

PIN 26 - MODE C is low so Q7 and Q8 remain off. A13 is coupled

fo PIN 26 by D5. Note that in a 2764 EPROM there is na connection

PIN 23 - as 2732,
PIN 26 - as 2764.
PIN 27 - MODE B is low so IG16d pin 11 will remain low. 1C17d pin
11 will follow A14.

27512:

PIN 1- MODE A's low so Q3 and Q4 will remain off. A15is coupled
fo PIN 1 by D3.

PIN 20 - as 2732.

PIN 22 - MODE A is low s0 IC15b pin 6 will be high, switching on Q
and Q2, coupling VPP to PIN 22.

PIN 23 - as 2732.

PIN 26 - as 2764,

PIN 27 - as 27256.

Note that D6 and D7 are germanium types, since silicon types
would cause the logic 0 inputs to the EPROM to be at the limit of the
specifications.

The two logic gates which would otherwise be unused, are used
to control Read and Program LED's. IC18b pin 6 goes low when R-
/W and ON-/OFF are both low, lighting D9 (Read) via Q10, whilst
IC18c pin 8 goes low when RMW- and ON-/OFF are low, lighting D8
(Program) via Q9. When both LED's are off it is safe to fit or remove
the EPROM, the other lines would have been set low by the software
before taking ON-/OFF high.

IC21 is the main 5 Volt regulator and powers all the logic ICs.
D11 protects the whole circuit against reverse polarity, since it is
easily possible to reverse the polarity on the sort of PSU used. LED
D10 indicates that the unit is powered up.

IC20 supplies the power to the EPROM, and is enabled by the
ON/OFF- line via Q17 and Q18. Q19 raises the GND pin of IC20 by

1 Volt, giving 6 Volts. When 5 Volts is required Q19 is shorted out
by Q20 controlled by IC18d, this happens when 5V/6V- or RIW- is
low.

IC19 is a step-up switching regulator which produces the
programming voltage required. The voltage is set by shorting out
sections of the resistor chain with transistors. 2716 EPROMSs require
25 Volts, not 21 Volts, so the MODE D- line is used to set this, The
R-W line controls Q15 and Q16 which connect the power to the
EPROM when the unit is in Program mode.

PARTS LIST

RESISTORS (all 1/4W- 5% or better) CAPACITORS IC2 T4HC4060
R1,6-19,27-33,36-38,41,42 10k (1-59,15,16 1016V radial IC3 6402

R2 4M7 C6,7 22p 0.2" pitch ceramic IC4 T4HC14

R3 2k2 C8 2n2 0.2" pitch ceramic IC5 74HC238

R4 1k0 c10 220p 0.2" pitch ceramic IC6-9 T4HCT5

RS 47k Cc1 470n 0.2" pitch IC10 7415244

R20,21 22k C12 4735V radial IC11,13 74HC4040

R22,23,40 330R C13 47116V radial IC12 74HC4024

Red 0R47 (or 2 x 1R0 in parallel) C14,17 110 16V radial IC14 74HC20

R25 1k2 C18-20,22-27 100n 0.2" pitch IC15 74HC00

R26 8k2 73] 220125V radial IC16 74HC08

R34 5k6 IC17,18 74HC32

R35 1k5 INDUCTORS IG19 TL497

R39 470R L1 4701H 2.3A bobbin type IC20,21 7805

RN1 100k x 8 SIL resistor network : Q1,3,5,7,15,17 ZTX750/751/752
RV1 470R or 500R horizontal preset SEMICONDUCTORS Q2,4,6,8,13,14,16,18-20 BC547/548/549
RV2-4 4K7 or 5k0 horizontal preset IC1 MAX232 Q912 BC557/558/559

ETI JANUARY 1993

vPp

Qa1
ZTX750
=P PiN 22

R7
10k

RIW ’JI

10k

MODE A

MODE D

MODE C

74HC32
Al F}
R12 10k
Q6
MODE D =355
"
RIW P—

VPP
Q3
ZTX750 .
p—> PIN 1

R10
10k

D3
1N4148

A15 H

R9 10k
MODE A a4 R11
BC548 10k

j|

p—> PIN 23

10k
D4
1N4148

e

Ri14
10k

MODE B

T4HC32

9
8
IC16c
MODE D j.———-l J

74HCO8

T4HC14
PROG PULSE p—8

PROG PULSE P2

MODE B p—134

T4HCO08
Al4 =

R18
10k

PIN 20

74HC32 .

PIN 27

Fig. 3a Control logic for EPROM socket

T4HC32

D1-5 1N4148 silicon signal diode
D8,7 OA47 germanium signal diode

D8 Red LED

D9 Yellow LED

D10 Green LED

D11 1N4001
MISCELLANEOUS

SK1 28 way ZIF socket
XT1 2.4576MHz crystal

Power Supply (10-18V DC @ 500mA), DIL IC sockets (1 x 40 way,
1x 14 way and 3 x 28 way), Heatsink for IC21, PCB, Case type MBS,
M3 hardware, Connectors for power and RS232, Veropins, Tinned
copper wire (24SWG) or through-PCB pins.

BUYLINES
All components are available from Maplin, the majority can probably also be obtained

- from your usual supplier. Small 0.47R resistors do not appear o be readily available - use

two 1R0 components in parallel. The PCB will be available from the ETI PGB service, next
month, Before purchasing a power supply, check the latest bargain list from Greenweld
(0703 236363), they often list suitable units for about £3.

The software listed in this article, together with a comprehensive menu driven control
program and some useful bits and pieces (IBM PG or compatible only) is available from the

-author at the following address:

Paul Stenning, 1 Chisel Close, Hereford, HR4 9XF. Please send a blank PC formatted
disk (3.5" or 5.25"), together with a cheque or postal order for £10, a refurn address label
and adequate return postage (overseas 2 International Reply Coupons). If you do not have
a disk send £12 and | will supply one (please specify size). B.A.E.C. members - see
newsletter for a special offer!

The author would also be interested to hear from users of other computers, who have
gither written suitable control software or who are looking for some - he will attempt to put
one in touch with the other! Please write with an SAE.

ETI JANUARY 1993

21

p—> PIN 26

R16
10k

ar
ZTX750

Vs

D5
1N4148

A13

R15 10k }
MODE C a8 R17
BC548 10k
=

a1o
BC558

vee
)

74HC32

ON/OFF Jprgy

D3

YELLOW LED

PROGRAM

ETI JANUARY 1993

22

Paul Stenning
continues with his
excellent design of
EPROM programmer.

he construction of this PCB is rather fiddly and
great care should be taken. All the components
except the power input socket (SK2) and the RS232
socket (SK3) are mounted on the PCB. This is a
double sided board, about 210=088mm in size, which is
available from the ETI PCB service. Note that the holes in
the PCB are not plated through. The PCB overlay is shown
in Figure 6. Due to the complexity of the PCB, the construc-
tion should be carried out in the following order.

Firstly enlarge IC20 and IC21 mounting tab holes, L1
mounting hole and the corner fixing holes to 3mm. Also
enlarge the holes for presets RV1-4 to 1.2mm, and the holes
for IC20, IC21, D11 and the Veropins to 1.0mm

Next fit the through-board connections in the positions
marked with a single small circle on the overlay, there are
122 in total. Tinned copper wire should be used here,
suitable pins may be available but check they will fit the
holes in the PCB (0.8mm) before ordering. Now fit the
transistors, resistor network and non-polarised capacitors.
The resistor network must be fitted the correct way round as
shown onthe overlay. Note that many of the component leads
will also need to be soldered on the top of the PCB - wherever
there is a pad it should be soldered to. This also applies to the
resistors, diodes and presets which can now be fitted. Note
that the presets can be fitted on the back of the PCB if
required, this may ease adjustment once the PCB is mounted
in the case.

Next fit all the DIL IC’s except IC3 and IC19. Note that
since many connections need to be soldered on the top of the
PCB it is not possible to use conventional IC sockets,
although some of the more expensive turned pin types may be

suitable. IC sockets should now be fitted in positions IC3,
IC19 and SK1. -

It is now possible to fit the remaining components in any
convenient order. Temporarily solder the LEDs at the full
length of their leads, and adjust them later when the PCB is
being fitted in the case. L1 should be mounted with an M3
nut, bolt and shake-proof washer (do not over-tighten) or a
dab of glue. IC20 and IC21 should be mounted with M3 nuts
and bolts, IC21 would benefit from a small heatsink or
bracket of some sort. Veropins should be fitted for the off-
board connections. Fit a wire link in LK1 position, between
the lower two homes for 9600 baud, or as shown on the
overlay for other rates. :
Testing ”‘

The PCB should be tested before fitting into the case. Do
not fit IC3 or IC19 yet. Connect the unit to a power supply
via a test meter set to 500mA DC or greater. Switch on and
watch the meter, if the reading exceeds 200mA switch off
immediately and find out why! Make a note of this current.
Ifall is well remove the meter and connect the power directly.
Now set the meter to 10V DC or thereabouts and check Ve
on the power pins of one of the TTL IC’s, this should be
between 4.75V and 5.25V. Also check for about +9V on pin
2 of IC1 and about -9V on pin 6 of IC1.

If you have a "scope, look at the DC input and check that
the troughs of any ripple do not go below 10V. If there is-
significant ripple from the power supply (greater than about
1V pk-pk), try connecting a 100025V capacitor directly
across the DC input.

You could now fit the remaining ICs, adjust the voltages,
and try the unit in use - and probably get away with it!
However I would strongly urge that the following step-by-
step checks are carried out to ensure the unit is fully
functional. A ’scope or logic probe would be most useful,
although most of the checks can be done with just a test
meter.

ETI FEBRUARY 1993

ano 0

anN 00— . 4 . 4 : 4 : 4 L 4 O ano
=1 211 uoLy dozz pl F iy
ALZIAT | s L mwmuum czy 1o JI oo == gl
i V' svson : o) =] alow [Eamod]
'.I]I-—U L
01 oed Sk 3 288 A 031 Naawo
ois | g 7]
A B e] awoo
8v508 » L6VIL
S =]
301 62H oo : 8 e = HOEE
(=] o 2]
> Ll [2] otH
H0L HOL L 0OF g1] PH
£EH zzd
i - 20A
- IvHD vZH
ddA <&
e HROZy 1
gss08a
ZLD
04s .—.h.. o%s
vAH
i P ood £AY

ONIMdNOJ30 a3LNHLSIa

upo kL
9z2 S22

ZEDHFL

anso- M
upoL
122 H

T
il

1l
1

rzd

i
R

0L
€J

i
1

uooL

022 6LD

1
1

i
;

j:1%e]

S i
-

200 @

——atl A9/AS

Oano

240/Mo

0=_>t

= 50A

aNo - M

= roi

+QL a1

20N @

€

OA

508L
Lzl

IA

Nl O

Fig.4 EPROM Programmer Power supplies

17

ETI FEBRUARY 1993

If you have an IBM PC or compatible, start BASICA or
G.W.BASIC (or QBASIC if you have MS-DOS 5), and enter
the test program given in Listing 1 (if you have obtained the
disk from the author simply run TEST1.EXE, which is the
compiled version). If you have a different computer you may
have to modify or re-write the program as necessary, the
notes in the ‘How it Works - Software’ section may be of
some help. It may be worth trying to get access to a PC, to

avoid having too many unknowns! 10 REM*** EPROM Pragrammer BASIGA Test Program 2 Version 1,00
20 REM ™ Copyright (C) Paul Stenning and ETI, 1992.
10 REM *** EPROM Programmer BASICA Test Program 1 Version 1.00 433 SE:EENO: LS
e o Rt S gedET (02 50 PRINT “EPROM Programmer BASICA Test Program2 - (C) Paul Stenring & ETI, 1982°
4 SCREENO:CLS o
50 PRINT “EPROM Programmer BASICA Test Program 1 - (C) Paul Stenning & ETI, 1992" g ggﬁ;ﬁog: ﬁ?{i&?}fmcmﬂso’ RO RANOOIAS HEEN 1
60 PRINT . :
90 PRINT#1,CHRS$(VAL(&h31");
70 OPEN “COM1:9800,N,8,1,C5200,CD0,050° FOR RANDOM AS #1 LEN = 1 :
8 INPUT:A$ 100 PRINT#1, CHRS(VAL&h4D"));
%0

IF A$ == THEN PRINT “QUIT': CLOSE #1 : END

100 IF LEN(AS) <> 2 THEN PRINT TAB(10); “INPUT ERROR’ : GOTO 80
110 PRINT #1, CHRS(VAL("&1" + AS)):

120 TIMEQUT =TIMER + 0.1

130 IFEQF{1) AND TIMER < TIMEOUT THEN GOTO 130

140 IF TIMER >= TIMEQUT THEN PRINT TAB(10); " : GOTO 80

150 A$=HEXS(ASCIINPUTS(1, £1)))

160 IF LEN(AS) < 2 THEN AS = 0" + AS

170 PRINTTAB(10); AS

180 GOTO80

LISTING 1

Insert IC3 (the 6402), connect the programmer to the
computers RS232 serial port (see Figure 5), switch it on and
then run the software. The software does nothing more
exciting than wait for you to enter a 2 digit hex number

should all be logic 1. Note that logic 1 is anything over 3.5V
and logic 0 is anything under 0.5V. Now type ‘00’ and the
logic levels should all be 0. To be certain, type 55° and the
levels should be 01010101, then type ‘AA’ and the levels
shouldbe 10101010. If you have a *scope or logic probe check
for a short positive going pulse on pin 19 whenever a number
is sent.

110 FOR COUNT =0T0 65535

120 LOCATE CSALIN, 1: PRINT COUNT;

130 IF COUNT =0 THEN GOSUB 210

140 IF COUNT =21845 THEN GOSUB 210

150 IF COUNT = 43590 THEN GOSUB 210

160 IF COUNT = 65535 THEN GOSUB 210

170 PRINT#1, CHR$(VAL(*&h507);

180 IFINKEYS = CHR$(27) THEN PRINT TABI(8); *ABORTED'": GOTO 200
180 NEXT

200 CLOSE #1:END

210 PRINT TAB{(8); “Press Any Key to Confinue...”
220 IFINKEY$ == THEN GOTO 220

230 RETURN

LISTING 2

The most likely cause of problems here is the RS232
wiring. Are you using the right port (COM1) on your PC?
You can edit line 70 of the program if you are using a port
other than COM1. Have youset LK1 to 9600 (or lower if your
type of computer won’t work at 9600)? Try swapping wires
2 and 3 in the RS232 lead. If the program appears to lock try
disconnecting the CTS wire (Ctrl-Break will stop the soft-
ware in this case). Check the link settings on your serial

™D =0 communications port - if you have the ‘Everex EV 170 Magic
AXD ——————0 I/O Card’ (used in many early XT and 286 AT machines) and
P s — 0O PCB can’t get it to work, write to the author!

[——C) Type ‘OF” and check pins 9, 10, 15 and 16 of IC6, they
should all be atlogic 1. Now type ‘00’ and they should all be
atlogic 0. Typing ‘05" should give 0101 and ‘0A’ should give

DC POWER % s —0O 1010. Now repeat the above, replacing the first character
INPUT +VE e with a ‘1” and checking the levels on IC7, then ‘2° and IC8,

and finally ‘3* and 1C9.

Now type ‘007, “10°, “30” then “70°. After you typed the
“70° the screen should show ‘00°, the others should have
given “**° The ‘Program’ (red) LED should also be on. This
RS 4 1 1 set ‘00" on the data bus, selected write mode to enable U10,

1 | then read the data back down the RS232 link. The most likely
o % % o Eé) cause of problems here is the RS232 link again.
oo o Now type ‘31’ then ‘70°. The screen should show ‘FF’
. and the ‘Read’ (yellow) LED should be on. IC10 is now
cTs disabled so it’s outputs are tristate and pulled up by RN1.
9 WAY D SOCKET 25 WAY D SOCKET Typing ‘30" then ‘70" should return ‘00 again. Typing
‘OF”, “1F’ then 70’ should return ‘FF’, typing ‘05°, “15” then
70’ should give ‘55°, and typing ‘0A’, ‘1A’ then ‘70" should
give ‘AA’. Also check that the appropriate data is actually
reaching the EPROM socket pins as shown below:

TXD RXD CTS GND

{:Ea] | 1
s e e
O0O000000O00O0O

Fig.5 Socket connections

(followed by <Enter>) and then sends it to the programmer.
It then attempts to read back a number, if it’s successful it
prints the number otherwise it prints **. To exit just press
<Enter> on it’s own.

Type ‘FF’ (don’t type the quotes, and follow it with

Data Line D7 D6 D5 D4 D3 D2 DI DO
Socket Pin 19 21817 1615 13 1124711

i . Type Expected Logic Level
<Enter=). Check the logic levels on pins 5 to 12 of IC3, they 00, 10° 0 T
W52l 52 Ol i0azaling 0l 0041
VA, “1A° L 0alag 0 sl Sanfaa il v
0] e o i o 1 b | 1 1 1 1 1

HOW IT WORKS
SOFTWARE

In the following section a reasonable understanding of program-
ming in BASIC is assumed. The software was written for Microsoft
BASICA, as supplied with Compaq DOS 3.31. It has also been
tested with QBASIC supplied with MS-DOS 5 and with Microsoft
QuickBASIC V45, Users of other BASIC dialects may have to
modify the code fo suit.

The first test program is shown in Listing 1. Line 70 opens COM!
(the first serial port) at <9600> Baud, <N>0 parity checking, <8> data
bits, and <15 stop bit. The timeout on CTS (clear to send) is set to
200 milliseconds, CD (carrier detect) and DSR (data set ready) are
disabled. Another serial port could be used in place of COM1 if
required, by editing this line.

Line 80 accepts an input from the keyboard, the semicolon
causes the cursor to remain on the same line after <Enter> is
pressed. Line 90 terminates the program if no value is entered. Line
110 converts the entered data from a two character string to a single
byte and sends it down the serial port. Note that in BASICA Hex
numbers are indicated by preceding them with “&h”, hence the value

of "&hFF" is 255, 9716

Lines 120 to 170 responsible for waiting up to 0.1 seconds for 0000 00 11 22 33 44 55 66 77 88 99 AA BB CCDDEE FF
a BASICA variable which contains the number of seconds since . ;
midnight to 2 decimal places (updated 18.2 times per second), this ; ;
is usedin Ims 120Iand TSDtocontml_the_ nmeout. EO_F{1]w||| hgwe 07E0 00 23 48 DE 4A D7 E1 4C 9A 8B BB DE 09 FF FF FF
a value of 0 if data is present, otherwise it will be 1. Line 140 prints 07F0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
“x3%" if 4 timeout has occurred, otherwise lines 150 to 170 read the

value, convert it from a single byte to a two character string (using
the HEX$ function) and print it. Line 180 loops back round for another
go!

The second test program, shown in Listing 2, is used to test the
address counter system. This clears the counters and then repeat-
edly increments them, by sending the appropriate codes. The
operation should be evident, given the information above.

The main control program is shown in Listing 3. This software
i about the minimum required to make sensible use of the program-
mer. It is written in @ manner which should make the functioning
relatively easy to understand, and is not intended to be an example
of good programming!

The subroutines at lines 7000 to 7060, and 8000 fo 8020 fetch
a byte from the serial port and send a byte to the serial port
respectively. Their operation is as described in the Listing 1 details
above. These subroutines are called frequently by the remainder of
the program.

Line 100 opens the serial communications as before. Lines 120
to 300 atfempt to establish communications with the programmer
and test whether or not the CTS connection is present and working.
Line 120 sets the program pulse duration to 40 milliseconds, initiates
a program pulse immediately followed by a send instruction. If CTS
is present the send instruction will not be sent until the program pulse
has finished so data will be received, otherwise no data will be sent
(see “How it Works -Hardware”). The integer variable PAUSE?% is
setto 1if there is no CTS line, causing the software to add suitable
delays itself - note that this will slow the operation of the software
quite drastically.

Lines 150 to 280 send values to the data laiches and then
attempt to read them back - this is to establish that communication
is reliable.

Lines 310 to 780 request information from the user regarding the
EPROM type and programming requirements, whilst lines 790 to 820
set up the programmer accordingly.

Lines 1000 to 1230 form the main menu. Note that CHR$(27)
gives the value of the Escape key.

The Read, Program and Verify sections use ASCI-HEX data
files in the programmers own format (conversion programs to and
from Intel-HEX are given later). The format is easy to produce and
edit manually.

The first line is the name of the EPROM type - “2716", "2732” efc.
The remaining lines each start with the address in Hex (4 digits),
followed by four spaces, followed by 16 bytes in Hex (2 digits) each
separated by one space. The addresses must be sequential,
starting at 0000. A small section is shown below:

It should also be noted that this format is not particularly efficient
with disk space - the file for a 27512 will take up about 250K. A file
compression utility, such as PKZIP or LHARC, will dramatically
reduce the size for storage if disk space is a problem.

With the information that has gone before, the operation of the
remaining sections of the software should be fairly apparent.

The section from 2000 to 2300 reads the contents of the EPROM
to a file. Lines 2100 and 2110 give a quarter second delay fo allow
the power supply rails to come up.

The section from 3000 to 3390 programs the EPROM from the
contents of a file. Lines 3270 to 3290 add a delay (100 milliseconds)
to allow for the programming pulse if the CTS line is not present, this
will occur whether the programming pulse is 1 or 40 milliseconds.
This delay may be optimised but it would be better to get CTS working
in the first place.

The section from 4000 to 4330 verifies (or compares) the
contents of the EPROM with a file, whilst the section from 5000 fo
5940 checks the device is blank (all locations contain “FF*). The
section from 6000 to 6220 allow the programming voltages to be
checked.

Other programs are available to convert the EPROM program-
mer data files to and from standard Intel-HEX data files respectively.
This is not the place for an explanation of the Intel-HEX file format,
50 please just accept that the programs work! Details of Intel-HEX
and other standard file formats are on the disk available from the
author, together with various conversion programs efc.

repeatedly increments the count, pausing at selected points
to enable the checks to be made, as shown below:

Now we come to the address bus. Type in the program
given in Listing 2 (save the other program first as it will be

needed again).

the program | 444 Tine Al5Al4AI3 AI2AI1 A0 A9 A8 A7 A6 A5 A4 A3 A2 Al A0
configures the program- | qoooepin 1 27 26 2 23 21 24 25 3 4 5 6 7 8 9 10
mer for27512 EPROM’s
so all 16 address lines Count Expected Logic Level
are bought to the 0 0000 10 0E 0RO 0 00000, 00 550 0
EPROM socket and 21845 0 . =0 e s e B e (e e) P s
should be checked there. 43690 Tt 017 lEv00a e 0e s liaa il 0-np] a0 dl = e
The program clears the 65535 Lo s e e sl Sl e et ool Ll 5
address counter and then

ETI FEBRUARY 1993

Hamod 2E25H

Ve . e
+ o =

e £33

T

R

R

S

@

©@® 000©
G e

221

4

1154
[
Y

S

o—
S

i
s

R

VOeuUuUuUoo
®
w
Ll ®»
m@»
@
1.
= w
8 L] - &
#
iﬁé -
%

HSP

Fig.6 Component Overlay

The logic levels should be checked on the pins of the
EPROM socket when the program pauses, if a level is
incorrect check on the appropriate pin on IC11 or IC12, then
trace the fault as necessary. Note that the program may run
quite slowly. A complied version (TEST2.EXE) which runs
considerably faster is on the disk available from the author.

Now re-load the first test program. Connect a ’scope or
logic probe to IC15 pin 11. Type ‘30°. Now when you type
‘60° you should observe a 40 millisecond positive going
pulse. Move the probe to pin 8 of IC15 and the pulse should
be negative going. Now type ‘32’ and repeat the above
checks, the pulse should now be 1 millisecond. With a logic
probe you will probably only be able to detect the presence
of the pulse and will have to assume it is the correct length,
with a test meter you probably won’t be able to see anything!

Now switch off and insert IC19. Connect a test meter set
to about 500mA DC in line with the power input and switch
back on. Ifthe current is more than 100mA greater than it was
before switch off and find out why! The most likely cause is
a short circuit on VPP somewhere. If all is well remove the
meter and connect the power directly. Set all four presets to
the centre position.

Set a test meter to the 10V DC range and connect between
pins 28 (+ve) and 14 (-ve) of the EPROM socket. Type ‘23’
then *38°, the meter should read 5V +/-0.25V. Now type ‘30’
and the reading should rise, adjust RV 1 for a reading of 6.1V
+/-0.1V. Type ‘80’ and the voltage should drop to zero. Set
the meter to the 30V DC range and transfer the +ve meter
probe to pin 1 of the EPROM socket. Type ‘34’ and then
adjust RV2 for a reading of 12.6V +/-0.1V. Type ‘30’ and
adjust RV3 for 21V +/-0.25V. Type ‘2F’ and adjust RV4 for
25V +/-0.25V. Type “31” and the voltage should drop to zero.

The only thing left to check now is the various configura-
tions for the different types of EPROM’s. As described in
‘How it Works’, the functions of six of the EPROM socket
pins vary depending upon the type of EPROM. The address
lines have already been checked at the EPROM socket, as has
the programming voltage to pin 1. The checking of the
remaining combinations is detailed below.

Type 40’ to clear the address counters. Connect a ’scope
or logic probe to pin 20 of the EPROM socket. Type ‘30’ then
2F’. A 40 millisecond positive going pulse should be
observed when ‘60’ is typed. Type ‘20°, and the pulse when
typing ‘60’ should now be negative going. Now type 23’ and
the line should remain at logic 0 when ‘60’ is typed. Move
the probe to pin 22. Type ‘2F’ then ‘31° and the line should
be atlogic 0. Type ‘30° and it should go to logic 1. Now type
‘20" and it should rise to 21V. Move the probe to pin 23
which should be at logic 0. Type ‘2F’ and the line should rise
to 25V. Move the probe to pin 26, which should be at 6V.
Type ‘20" and it should go to logic 0. Finally move the probe
to pin 27 and type ‘23°. A 40 millisecond negative going
pulse should be seen when you type ‘60’

If you have reached the end of all this successfully you can
be confident that your EPROM programmer is 100% func-
tional!

The Case.

The prototype was mounted in a plastic case (type MB6)
having external dimensions 0f220ec150=64mm. The remov-
able panel is considered to be the bottom, and may be fitted
with self-adhesive feet if required. The top surface needs
cut-outs for the EPROM ZIF (Zero Insertion Force) socket
and the LEDs, as well as four fixing holes for the PCB. You
may also wish to make four small holes to enable adjustment
of the presets.

The rectangular cut-out for the ZIF socket may be made
by drilling a line of shall holes around the edge then breaking
out the centre part and filing to shape. Take care not to file

ETI FEBRUARY 1993

the hole too large or the result will look untidy! The socket
is raised above the PCB by stacking up a number of 28 pin
DIL IC sockets, three were used on the prototype. Ifthe result
feels insecure, the sockets may be held together with a
suitable adhesive.

Position the PCB and mark the positions of the four fixing
holes and then measure the positions of thethree LED holes.
The first LED is 4mm down and 6mm to the left of the top
right fixing hole (view from outside the box), the other two
are spaced below at 9mm intervals. The fixing holes are
3mm in diameter whilst the LED holes are Smm. Also drill
suitable holes in the rear of the case for the DC input socket
and the RS232 cable or connector. On the prototype a 3.5mm
jack socket was used for power (since this matched the plug
on the PSU), and the RS232 cable passed through a hole
fitted with a grommet. Choose connectors that are not likely
to come unplugged accidentallyl The case may now be
marked with rub-down transfers or similar if required.

Solder suitable lengths of wire to the PCB for the off-
board connections and insert the LEDs through the holes in
the PCB (do not solder yet). Mount the PCB in the case using
M3 screws, nuts and spacers, then position the LEDs so that
they slightly protrude through the holes and solder them into
place. Complete the interwiring (see Fig 5) and assemble the
case. Ifan additional smoothing capacitor was found neces-
sary whilst testing, this may be mounted across the pins of the
DC input socket, or on the rear of the PCB in parallel with
C21.

In Use.

The control software is shown in Listing 3 and is suitable
for an IBM PC or compatible machine running BASICA,
G.W.BASIC or QBASIC. This software is about the mini-
mum required to make sensible use of the programmer. The
functioning of the software is described in the “How it Works
- Software™ section.

If BASICA or G.W.BASIC is being used, the program
will run fairly slowly. This is a limitation of interpreted
BASIC. QBASIC supplied with MS-DOS 5 is a much more
advanced product and a good deal better in this respect.

Additional (faster) software is supplied on the disk
available from the author, see Buylines.

An EPROM must not be inserted or removed if the
‘Program’ or ‘Read’ LED is lit, or if the programmer is
configured for a different type of device. 24 pin EPROMs
must be fitted in the lower pins (3-26) of the socket. In all
cases pin 1 is upwards. Failure to observe the above may
result in damage to the EPROM or (less likely) the program-
mer.

The programmer should be switched on and connected to
COM]1 (RS232 serial port 1) on the computer. Start the
software and the ‘Program’ LED will light. Once successful
communication has been established the program will re-
quest information about the type of EPROM and the pro-
gramming method required. See the table below or consult
the manufacturers data book.

Some 2764 and 27128 types require a complex arrange-
ment of programming pulses however a single 1ms pulse will
usually suffice. Ifin doubt or if problems are experienced use
40ms. Although some 2716 and 2732 devices will program
successfully with a lms programming pulse, this is not
recommended for final EPROMSs, but may prove useful when
festing software efc.

The use of the ‘A’ suffix on 12.5V 2764 and 27128 types
appears to be less than standard, it is suggested that all 2764s
and 27128s should be tried on 125V first, since 21V will
destroy a 12.5V device.

Once these selections have been made the ‘Program’
LED will extinguish and the main menu will appear.

‘Read’ (menu option 1) reads the contents of an EPROM
to a file. Note that the file format used is non-standard,
however programs to convert to and from the Intel-HEX
standard are available from the author (see buylines). The
advantage of the file format is that it is easy to generate and
edit manually.

‘Program’ (option 2) programs the EPROM from a file.
The EPROM is not blank checked before programming or
verified afterwards, these operations should be done from the
main menu

fndwic?lually EPROM Programming | Supply | Programming |

if reqmrc@. Type Number Voltage | Voltage | Pulse Length
‘Verify: | :

(option 3) | 9916 & 27C16 25V 5V 40ms

compares the | 5735 g 97032 21V 5V 40ms

contents of | 56, 21V 5V 1ms

the EPROM | 5764 & 2764A 125V 5V ims

it Bleie gl ones 21V 5V 1ms

and ‘Blank | 550198 8 271284 125V sV {ms

Check’ (0P~ | 57756 & 27C256 12.5V 6V 1ms

tiond)doesas | 57513 & 27C512 12.5V 6V Imé

it’s name sug-

gests! Both

these options report the number of locations that failed.
‘Change Configuration’ (option 5) re-starts the software
sothe EPROM type and programming method canbe changed.
‘Adjust Voltages’ (option 6) allows the programming
voltages to be checked and adjusted if required.
Happy programming!

REM *** EPROM Programmer BASICA Gontrol Software Versian 1.00

REM *** Copyright (C) Paul Stenning and ETI, 1992.

REM

SCREENO:CLS

PRINT *EPROM Programmer BASICA Confrol Software - (C) Paul Stenning & ETI, 1992"
PRINT : PRINT “Ensure EPROM Socket is Empty, then press any key..."

K§ = INKEYS : IF K$ == THEN GOTO 70

|F K = CHR$(27) THEN PRINT : PRINT “Quit™: GOTO 10000

PRINT “Establishing Communication®;

100 OPEN"COM1:9600,N,8,1,05200,C00,0S0" FOR RANDOM AS #1 LEN =1

110 PRINT*.%

120 8 =*30": GOSUR 8000 : 5% = 60" : GOSUB 8000 : S§ = 70" : GOSUB 8000 : GOSUB 7000
130 IFF$="""THEN PAUSE% = 1 ELSE PAUSE% =0

140 PRINT % .

150 8% ="05" : GOSUB 8000 : 55 ="15": GOSUB 8000 : S§ = 60" : GOSUB 8000
160 IF PAUSE®: =0 THEN GOTO 190

170 TIME =TIMER + 0.1

180 IF TIMER < TIME GOTO 180

190 §5="70": GOSUB 8000

200 GOSUBT000

210 IF F$ < “55° THEN GOTO 9000

220 PRINT®.%

230 5%="0A": GOSUB 8000 : $5="1A": GOSUB 8000 : S8 = “60" : GOSUB 8000
240 |F PAUSES: =0 THEN GOTO 270

250 TIME=TIMER +0.1

260 IF TIMER < TIME GOTO 260

270 8% ="70": GOSUB 8000 : GOSUB 7000

280 IF F$ <> “AA" THEN GOTO 9000

200 PRINT "5

%00 |F PAUSES: =0 THEN PRINT “Ok.” ELSE PRINT “No CTS Line -Software Delay Used.”
310 PRINT

320 PRINT® 1-2716

EEI8s5EHEs

ETI FEBRUARY 1993

330 PRINT® 2-2732°

340 PRINT® 3-2784°

350 PRINT® 4-27128°

360 PRINT* 5-27256

370 PRINT“ 6-27512"

380 PRINT “Select EPROM Type:

390 K$=INKEYS

400 IF K$ = CHR$(27) THEN PRINT *Quit" : GOTO 10000

410 IFKS="1"THEN TYPENAMES ="2716": TYPECODES = “2F" : MAXADDR = 2047 : GOTO 480
420 IFK$ =2 THEN TYPENAMES ="2732" : TYPECODES = “25": MAXADDR = 4095 GOTO 480
430 IFK$="3"THEN TYPENAMES =“2764": TYPECODES =*23": MAXADDR = 8191 : GOTO 480

440 IFKS="4"THEN TYPENAMES ="27128": TYPECODES ="23": MAXADDR = 16383: GOTO480

450 IFK$="5"THENTYPENAMES ="27256": TYPECODES ="21": MAXADDR = 32767 : GOTO 480
460 IFK§="6"THEN TYPENAMES ="27512": TYPECODE$ ="20°: MAXADDR = 65535 GOTO 480
470 GOTO 390

480 PRINTTYPENAMES

490 PRINT

500 PRINT® 1-12.5Volts™

510 PRINT® 2-21/25 Volts*

520 PRINT “Select EPROM Programming Voltage: %

530 K§=INKEYS

540 IF K§ = CHR${27) THEN PRINT “Quit' : GOTO 10000

550 IF K§="1"THEN PROGVOLTNAMES = *12.5 Volts™: STATUS% = 4: GOTO 580

560 IF K$="2"THEN PROGVOLTNAMES ="21/25 Volts™: STATUS% = 0 : GOTO 580

570 GOTO 530

580 PRINTPROGVOLTNAMES

580 PRINT

600 PRINT* 1-5 Volis"

610 PRINT* 2-6 Valis"

620 PRINT “Select EPROM Supply Voltage: *;

630 K$=INKEYS

640 IF K& = CHR$(27) THEN PRINT “Quit™: GOTO 10000

650 IF KS ="1"THEN SUPPVOLTNAMES =5 Votts": STATUS% = STATUS% + 8 : GOTO 680
660 IFKS ="2"THEN SUPPVOLTNAMES = "6 Volts™: STATUS% = STATUS% + 0 : GOTO 680
670 GOTO630

680 PRINTSUPPVOLTMAMES

690 PRINT

700 PRINT* 1-1 MillSecond

710 PRINT* 2- 40 MilliSeconds™

720 PRINT “Select EPROM Program Pulse Duration:

73 K$=INKEYS

740 IF K§ = CHRS{27) THEN PRINT “Quit': GOTO 10000

750 IFK$ ="1"THEN PROGPULSENAMES ="*1 MiliSecond”: STATUS% = STATUS% + 2: GOTO
780

760 IFK$="2"THEN PROGPULSENAMES = 40M|IIrSec0nds :STATUS%=STATUS%+0:GOTO
80

770 GOTO730

780 PRINTPROGPULSENAMES;

780 8$=TYPECODES: GOSUE 8000

800 8§ ="3"+ HEXS(STATUS% + 1) : GOSUB 8000

810 58 ="00": GOSUB 8000 : S§ = “10": GOSUB 8000

820 55="40": GOSUB 8000 : 5§ ="80" : GOSUB 8000

1000 REM ™* Main Menu

1010 CLS

1020 PRINT “EPROM Programmer BASICA Control Software - (C) Paul Stenning & ETI, 1982"
1030 PRINT “Type *; TYPENAMES; * Program®; PROGVOLTNAMES:
1040 PRINT* Supply *; SUPPVOLTNAMES; “ Pulse *; PROGPULSENAMES
1050 PRINT : PRINT “MAIN MENU*

1060 PRINT *~mmmmmme”

1070 PRINT® 1 - Read”

1080 PRINT® 2 - Program”

1090 PRINT* 3 - Verify”

1100 PRINT* 4 - Blank Check™

1110 PRINT* 5- Change Configuration”

1120 PRINT® 6 - Adjust Voltages™

1130 PRINT * ESC - Quit”

1140 PRINT : PRINT “Select Option Required: *

1150 K$=INKEY$

1160 IF K3 ="1" THEN PRINT ‘Read" : GOTO 2000

1170 IF K$ = "2" THEN PRINT “Program’ : GOTO 2000

1180 IF K§ = “3" THEN PRINT “Verify" : GOTQ 4000

1190 IF KS =“4" THEN PRINT "Blank Check” : GOTO 5000

1200 IF KS$ ="5" THEN RUN

1210 IF K$ ="6" THEN PRINT “Adjust Voltages" : GOTO 6000

1220 IF K$ = CHRS{27) THEN PRINT “Quit" : GOTO 10000

1230 GOTO 1150

2000 REM *** Read EPROM to File

2010 PRINT : PRINT “Insert EPROM to Read, then press any key (ESC to Aborf)"
2020 K§=INKEYS : IF K5 = THEN GOTO 2020

2080 IF K$ = CHRS(27) THEN GOTO 1000

2040 PRINT

2050 INPUT “Output File Mame * FILES

2060 OPENFILES FOROUTPUT AS #2

2070 PRINT

2080 PRINT #2, TYPENAMES

2090 58 ="40": GOSUE 8000

2100 TIME = TIMER +0.25

2110 IF TIMER < TIME THEN GOTO 2110

2120 FORADDR =0TO (MAXADDR - 15) STEP 16

2130 IF INKEYS = CHRS${27) THEN BEEP : PRINT : PRINT “ABORTED!" : GOTO 2260
2140 ADDRS=HEX$(ADDR)

2150 IF LEN(ADDRS) <4 THEN ADDRS = *0" + ADDRS : GOTO 2150
2160 PRINT #2, ADDRS; TAB(9);

2170 FOR COUNT%=0TO 15

2180 S§="70" : GOSUB 8000 : GOSUB 7000

2190 PRINT #2, F§; "~

2200 S8 ="50": GOSUB 8000 -

2210 LOCATE CSRLIN, 1

2220 PRINT “Reading Location”; ADDR + COUNTS; ‘of"; MA}(ADDR
2230 NEXT

2240 PRINT #2,

2250 NEXT

2260 8§ ="40": GOSUB 8000 : 5% = 80" : GOSUB 8000

2270 CLOSE #2

2280 PRINT : PRINT “Press any key to continug...”

2200 IF INKEYS == THEN GOTO 2290

2300 GOTO 1000

3000 REM *** Program EPROM from File

3010 PRINT

3020 PRINT “Insert EPROM to Program, then press any key (ESC to Abori)”
3030 K$ = INKEYS : IF K§ = THEN GOTO 3030

3040 IF K$ = CHRS$(27) THEN GOTO 1000

3050 PRINT

3060 INPUT “Input File Name “FILES

3070 OPEN FILES FORINPUT AS #2

3080 LINEINPUT 2, DATS

3090 IF DATS <> TYPENAMES THEN : BEEP : PRINT *FILE DOES NOT MATCH EPROM TYPE® :
GOTO3340

3100 §8="3"+ HEX$(STATUS"%): GOSUB 8000

3110 35="40": GOSUB 8000

3120 TIME = TIMER +0.25

3130 IF TIMER < TIME THEN GOTO 3130

3140 PRINT

3150 FORADDR=0TO (MAXADDR - 15) STEP 16

3160 IF INKEY$ = CHR$(27) THEN BEEP : PRINT : PRINT “ABORTED!" : GOTO 3340
3170 LINE INPUT #2, DATS

3180 DAT = VAL(*&h" + LEFTS(DATS, 4))

3190 IF DAT < 0 THEN DAT = DAT + 65536 :

3200 IF DAT <> ADDR THEN BEEP : PRINT : PRINT ‘FILE ADDRESS ERROR’: GOTO 3340
3210 FORCOUNT%=0TQ 15

3220 LOCATECSRLIN, 1

3230 PRINT *Programming Location™; ADDR + COUNT®%:; “of': MAXADDR;
3240 8§ ="0" + MID$(DATS, 10+ COUNT® * 3, 1) : GOSUB 8000

3250 58 ="1"+ MIDS{DATS, 9 + COUNT?% * 3, 1) : GOSUB 8000

3260 5% = 60" : GOSUB 8000

3270 IF PAUSES = 0 THEN GOTO 3300

3280 TIME =TIMER + 0.1

3280 IF TIMER < TIME THEN GOTO 3290

3300 S8 ="50": GOSUB 8000

3310 NEXT

3320 NEXT

3330 PRINT

3340 5§ =3+ HEXS(STATUS% + 1) : GOSUB 8000

3350 5 ="40": GOSUB 8000 : S = *80": GOSUB 8000

3380 CLOSE#2

3370 PRINT : PRINT “Press any key fo confinue...”;

3330 IF INKEYS =" THEN GOTO 3380

3380 GOTO 1000

4000 REM *** Verify EPROM with File

4010 PRINT : PRINT “Insert EPROM to Verify, then press any key (ESC fo Abort)"
4020 K$ = INKEYS : IF K§ = THEN GOTO 4020

4030 IF K$ = CHR$(27) THEN GOTO 1000

4040 PRINT : INPUT *Input File Name *; FILES

4050 OPEN FILES FORINPUT AS #2

4060 PRINT

4070 LINE INPUT #2, DATS ;
4080 IFDATS <>TYPENAMES THENBEEP: PRINT“FILE DOESNOT MATCHEPROMTYPE: GOTO
4300

4090 S$="40": GOSUB 8000

- 4100 TIME=TIMER + 0.25

4110 IF TIMER < TIME THEN GOTO 4110

420 FAIL=0

4130 FORADDR =0TO (MAXADDR - 15} STEP 16

4140 IF INKEY$ = CHR$(27) THEN BEEP : PRINT : PRINT *ABORTED!" : GOTO 4300

ETI FEERUARY 1993

4150 LINE INPUT #2, DATS

4160 DAT = VAL{'8h" + LEFT${DATS, 4)

4170 IF DAT <0 THEN DAT = DAT + 65536

4180 IF DAT < ADDR THEN BEEP : PRINT : PRINT *FILE ADDRESS ERROR" : GOTO 4300
4190 FORCOUNTS% =0 TO 15

4200 LOCATECSRLIN, 1

4210 PRINT “Verfying Location”: ADDR + COUNTS; ‘oF; MAXADDR;
4220 8§ ="70": GOSUB 8000 : GOSUB 7000 '

4230 IF F$ <> (MID${DATS, § + COUNT®%* 3, 2)) THEN FAIL = FAIL + 1
4240 8§ = 50" GOSUB 8000

4250 NEXT

4260 NEXT

4270 PRINT :PRINT

4280 IF FAIL =0 THEN PRINT “Verified OK’

4250 IF FAIL < 0 THEN BEEP : PRINT “Verity Failed on'; FAIL; "Locafions®
4300 5§ = *40": GOSUB 8000 - $$ = *80°: GOSUB 8000

4310 CLOSE #2: PRINT : PRINT “Press any key to confinue..”

4320 IF INKEYS = * THEN GOTO 4320

433 GOTO 1000

5000 REM *** Blank Check EPROM

5010 PRINT : PRINT “Insert EPROM to Blank Check, then press any key (ESC to Abort]"
5020 K$ = INKEYS - IF K§$ = THEN GOTO 5020

5030 IFK$ = CHR$(27) THEN GOTO 1000

5040 PRINT

5050 S§ =“40" : GOSUB 8000

5060 TIME = TIMER +0.25

5070 IF TIMER < TIME THEN GOTO 5070

5080 FAIL=0

5040 FORADDR =0 TOMAXADDR

5100 LOCATECSRLIN, 1

5110 PRINT “Checking Location’; ADDR; ‘of"; MAXADDR;

5120 5§ ="70": GOSUB 8000

5130 GOSUBT000

5140 IF F§ < “FF" THEN FAIL = FAIL +1

5150 5% ="50": GOSUB 8000

5160 IF INKEY$ = CHRS{27) THEN BEEP : PRINT : PRINT “ABORTED!": GOTO 5210
5170 NEXT

6000 REM *** Adjust Programming Voltages

6010 PRINT : PRINT “Ensure EPROM Socket is Empty, then press any key (ESC to Abort)"
6020 K$ = INKEY$: IF K$ = THEN GOTO 6020

6030 IF K$ = CHA${27) THEN GOTO 1000

6040 PRINT

6050 5§ ="20": GOSUB 8000 : 5§ = "30" : GOSUB 8000

6060 PRINT “Connect Test Meter Between pins 28 (+ve) and 14 (-ve) of EPROM Socket”
6070 PRINT *Adjust RV1 for Reading of 6.1V {+- 0.1V), then press any key..”

6080 IF INKEYS =" THEN GOTO 6080

6080 PRINT

6100 8§ ="21": GOSUB 8000 : 5§ ="34: GOSUB 8000

6110 PRINT “Connect Test Meter Between pins 1 (+ve) and 14 (-ve) of EPROM Socket'
6120 PRINT “Adjust RV2 for Reading of 12.6V (+/- 0.1V), then press any key...”

6130 IF INKEY$ = * THEN GOTQ 6130

6140 S§="30": GOSUB 8000

6150 PRINT “Adjust RV3 for Reading of 21V (+/- 0.25V), then press any key..."

6160 IF INKEY$ = = THEN GOTO 6160

6170 5% = “2F": GOSUB 8000

£180 PRINT “Adjust R4 for Reading of 25V (+/- 0.25V), then press any key...";

6190 IF INKEY$ = THEN GOTO 6190

6200 5§ = TYPECODES : GOSUB 8000 : $§ = “3" + HEX$(STATUS %'+ 1) : GOSUB 8000
6210 S§="80": GOSUB 8000

6220 GOTO 1000

.

7000 REM *** Fetch Byte from Programmer

7010 TIMEQUT =TIMER + 0.1

7020 IF EQF(1) AND TIMER < TIMEQUT THEN GOTO 7020
7030 IF TIMER >= TIMEOUT THEN F§ =**" :RETURN
7040 F$=HEXS{ASC(INPUTS(1,#1)))

7050 IFLEN(FS) <2 THEN F$="0"+ F§

7060 RETURN

8000 REM *** Send Byte to Programmer
8010 PRINT #1, CHRS{VAL('&h" + S§));
8020 RETURN

9000 REM *** Communication Emror Message
9010 PRINT*.ERROR COMMUNICATING WITHPROGRAMMER®

5180 PRINT:PRINT 9020 BEEP

5190 IF FAIL =0 THEN PRINT “Blank EPROM" 9030 GOTO 10000

5200 IF FAIL <> 0 THEN BEEP : PRINT “EPROM NOT BLANK - Failed on", FAIL; "Locations™

5210 5§ = "40": GOSUB 8000 : $§ = 80" : GOSUB 8000 i 10000 REM *** End Program

5220 PRINT : PRINT “Press any key to continue...”; 10010 CLOSE

5230 IF INKEY$ = THEN GOTQ 5230 10020 PRINT:PRINT

5240 GOTO 1000 10030 SYSTEM
BUYLINES

Al components are available from Maplin, the malcnty can
probably also be obtained from your usual supplier. Small 0.47R
resistors do not appear to be readily available - use two 1R0
components in parallel. The PCB is available from the ETI PCB
service. Before purchasing a power supply, check the latest bargain
list from Greenweld (0703 236363), they often list suitable units for
about £3.

The software listed i this article, together with a comprehensive
menu driven control program and some useful bits and pieces (IBM
PC or compatible only) is available from the author at the following
address:

Paul Stenning, [N GGG Fc:s¢ send
a blank PC formatted disk (3.5" or 5.25"), together with a cheque or
postal order for £10, a refun address label and adequate return
postage (overseas 2 International Reply Coupans). If you do not
have a disk send £12 and | will supply one (please specify size).
B.A.E.C. members - see newsletter for a special offer!

The author would also be interested to hear from users of other
computers, who have either written suitable control software or who
are looking for some - he will attempt to put one in touch wilh the
other! Please write with an SAE.

(2) 82d HIWWGHIOH WOHd3

I13 ¥ ININNILS od 26B1

H3a10s

SXIuHL 3018

Top Side

Solder Side

]

ETI FEBRUARY 1992

